Issuer-Hiding Attribute-Based Credentials

Jan Bobolz!, Fabian Eidens!,
Stephan Krenn?, Sebastian Ramacher?, and Kai Samelin®

! Paderborn University, Paderborn, Germany
{jan.bobolz,fabian.eidens}Q@uni-paderborn.de
2 AIT Austrian Institute of Technology, Vienna, Austria
{stephan.krenn,sebastian.ramacher}@ait.ac.at
3 Independent, Germany
kaispapers@gmail.com

Abstract. Attribute-based credential systems enable users to authenti-
cate in a privacy-preserving manner. However, in such schemes verifying
a user’s credential requires knowledge of the issuer’s public key, which
by itself might already reveal private information about the user.

In this paper, we tackle this problem by introducing the notion of issuer-
hiding attribute-based credential systems. In such a system, the verifier
can define a set of acceptable issuers in an ad-hoc manner, and the user
can then prove that her credential was issued by one of the accepted
issuers — without revealing which one. We then provide a generic con-
struction, as well as a concrete instantiation based on Groth’s structure
preserving signature scheme (ASIACRYPT’15) and simulation-sound ex-
tractable NIZK, for which we also provide concrete benchmarks in order
to prove its practicability.

The online complexity of all constructions is independent of the number
of acceptable verifiers, which makes it also suitable for highly federated
scenarios.

Keywords: Cryptographic protocols - issuer-hiding - privacy-preserving - anony-
mous credentials - authentication

1 Introduction

Anonymous credential systems and their attribute-based extensions (ABCs) al-
low users to receive digital certificates (credentials) certifying certain pieces of
personal information (attributes) from issuers. A user can then present her cre-
dential to a werifier in a way that respects the user’s privacy while giving high
authenticity guarantees to the verifier. That is, the user can decide, on a fine-
granular basis, which information about her attributes she wants to disclose to
the verifier, while no further information, including metadata, is revealed. In
particular, different actions of the same user can only be linked through the dis-
closed information. In the most general case, the verifier can publish arbitrary
predicates (Boolean formulas) over attribute values that users need to satisfy

2 J. Bobolz et al.

for authentication (e.g., a user is older than 21, comes from a specific country,
or has a certain name), and receives cryptographic evidence that such attribute
values were certified by the given issuer. Anonymous credential systems were
first envisioned by Chaum [24,25]. Besides well-known systems like Microsoft’s
U-Prove [11,43] and IBM’s Identity Mixer [18-20,22], a large body of work
with different optimizations and functionalities can be found in the literature,
e.g. [7,8,15-17,27,37,44].

All of the aforementioned ABC systems have in common that the privacy
guarantees only hold with respect to a single issuer key: whilst not being able to
link actions of a single user, a verifier learns the public key of the issuer of the
underlying credential. Even though this seems to be a natural property at first
glance, it turns out that this approach leads to a tradeoff between scalability and
user privacy. As an example, consider a state-wide electronic identity system with
millions of users. In order to give users the highest level of privacy, all citizens’
personal credentials need to be issued under the same public key. In case of a
compromise of the secret key, all previously issued keys need to be invalidated,
potentially requiring millions of certificates to be re-issued under a new key.
Alternatively, different keys could be used for groups of citizens, e.g., randomly,
per time period, or per administrative region. However, as the issuer’s public
key is revealed upon presentation, this approach dramatically reduces the size
of the anonymity set of a specific user.

Furthermore, many scenarios would benefit from a dynamic and ad-hoc def-
inition of a set of issuer keys accepted by a verifier. For instance, universities
may issue electronic student IDs to their students. Depending on the concrete
scenario, students may need to prove that they are enrolled at a specific uni-
versity (e.g., to enter the campus), or that they are enrolled at any university
without needing to reveal the university (e.g., to be granted an online student
discount). Similarly, citizens may receive electronic identities from their nation
state, which they can then use to prove that they are eligible, e.g., for participa-
tion in opinion polls in their country. However, they might want to use the same
credential to also prove that they are living in any country of a specific region
(e.g., the European Union) for cross-country citizen engagement processes which
do not require to reveal the specific citizenship.

In vehicular ad-hoc networks (VANETS) [32] or vehicle-to-infrastructure net-
works (V2I), such a solution allows each car manufacturer to use their own secret
keys (e.g., per model), while avoiding to reveal unnecessary information (e.g.,
the model) when authenticating towards other parties.

Finally, Cloudflare recently announced a replacement of CAPTCHAs by
cryptographic attestation of personhood using, e.g., FIDO tokens.* The idea is
that instead of solving a puzzle, users click a physical button on an accepted hard-
ware token, which responds to a cryptographic challenge. However, as pointed
out by Cloudflare, a user’s key “looks like all other keys in the batch”, meaning
that the anonymity set of a user shrinks to the number of devices in a batch. It

4 https://blog.cloudflare.com/introducing-cryptographic-attestation-of-
personhood/

https://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/
https://blog.cloudflare.com/introducing-cryptographic-attestation-of-personhood/

Issuer-Hiding Attribute-Based Credentials 3

would thus be desirable to dynamically add additional batches to this anonymity
set, without users needing to obtain new credentials for their existing devices.

Related work. Different mitigation strategies for these challenges exists. For in-
stance, approaches for decentralizing the issuer have been proposed, e.g., by fully
avoiding the need for a trusted issuer leveraging public append-only ledgers [33,
48], or by deploying threshold cryptography to require multiple issuers to con-
tribute to the credential issuance process [14,41,47]. While such approaches
reduce the risk of compromised issuer keys, they do not directly allow to dy-
namically adjust the set of issuers among which a user should remain private.

Delegatable credentials [4,7,13,23,27] offer an alternative solution, where
users can issue credentials derived from their own credentials to other users. All
credentials eventually trace back to a root authority’s public key, yet the verifier
does not learn the precise issuer within the delegation “tree”. While delegatable
credentials are a valuable tool, e.g., for managing privileges within organizations,
they do not solve the issues addressed in this paper as they assume a single root
authority, which will typically not exist in the federated scenarios sketched above.
They also do not allow for ad-hoc definitions of accepted issuers. Furthermore,
revocation of sub-issuers within the delegation tree is computationally expensive,
while it can be achieved for free in our construction.

Closely related to anonymous credentials, also in self-sovereign identity (SSI)
systems multiple issuers will participate. In such systems, e.g, [2,3,38], users can
join by presenting some form of credential to one or multiple verification nodes.
In eSSIF®, which is the European Union’s attempt to build a large scale SSI
system, these credentials are issued by national authorities run by each member
state. If the credential is accepted by the nodes, they record their decision on
a distributed ledger. Even if these systems are not built from ABCs, they can
be designed to mimic some of their functionalities. Indeed, whenever the user
wants to present attributes included in their credential to a service provider,
a presentation of some of the attributes can be computed with respect to the
information stored on the ledger. Due to the trust put into the distributed ledger
and the verification nodes, it is thereby not necessary to show the issuer public
key to the verifier. Hence, this additional layer, i.e. the ledger and verification
nodes, provides some level of mitigation against identification attempts based on
the issuer. Yet, the issuer is known to the verification nodes responsible for the
initial joining of the system. Especially when the system is built from a public
ledger, a service provider could also run such a node and therefore information
on the issuers could potentially be gathered. Also, the authenticity guarantees
are no longer end-to-end, but partially rely on the verification nodes and the
consensus mechanism employed for the distributed ledger.

Our Contributions. In this paper we address the discussed challenges by pre-
senting an issuer-hiding attribute-based credential system. That is, our system
allows a user to hide the issuer of her credential among a set of issuers. More

® https://decentralized-id.com/government/europe/eSSIF/

https://decentralized-id.com/government/europe/eSSIF/

4 J. Bobolz et al.

specifically, the verifier may issue a policy defining the issuers he is willing to
accept for a certain presentation session, and the user may then prove that she
indeed owns a credential issued by one of those issuers.

Firstly, this approach allows a user to use her credential in various contexts,
as described in the examples above. Secondly, the revocation of issuers becomes
efficient in the sense that credentials issued by a specific issuer can be revoked
by simply no longer including this issuer in the policy. Finally, additional issuers
can be added in a seamless fashion by adding them to the policy.

Overview of Our Approach. To explain the technicalities of our construction let
us first solve the hiding of public keys during authentication straightforwardly. As
already mentioned, a user’s credential on attributes m = [age, name, state,
reputation| by issuer |; is a signature cred on the message vector m valid
under the issuer’s public key ipk,. To authenticate at a verifier Vy the user
U proves validity of cred under the public key ipk;. More formally, U sends
a non-interactive proof NIZK[(z = ipk;,w = {m, cred}): Verify(ipk;, cred, m)].
Public common input to the NIZK is ipk;. The witness, hence private input
by the user are cred and m. The NIZK deals with the privacy of the witness,
but ipk; is publicly known. As a feature this lets verifiers interpret attributes
and credentials with respect to the issuer, e.g. reputation has potentially more
weight if ipk; belongs to a government agency. In other cases, this is a detriment
to user privacy, e.g. the attribute state certified in cred is never revealed by the
user, nonetheless the verifier may learn state implicitly by looking at ipk ;.

An idea to hide ipk; in the above NIZK is to build a structure reminiscent
of ring signatures. For authentication, the user collects an appropriate set of
issuer public keys PK = {ipky,...,ipk;,...,ipk,}. Then we change the NIZK
statement to NIZK[(z = PK,w = {ipk;, m, cred}): V{_; Verify(ipk;, cred, m)].
We solved our problem, the or-statement in the NIZK hides under which ipk the
user’s credential is valid.

The downside is that naively the proof size and verification cost is now linear
in n = |PK| which limits the practicability of this approach. Hence, the next
essential step is to avoid the or-statement in the NIZK.

This can be achieved by letting the verifier sign the public keys of the ac-
cepted issuers, by computing o; & Sign(vsk,ipkj) for all ipk; € PK, where
(vsk, upk) is the verifier’s key pair. Instead of performing an or-proof, the user
can now show that she knows a signature, issued by the verifier, on the public
key of the issuer that issued the user’s credential. That is, the user can now send
NIZK[(z = vpk,w = (o, ipk, cred, m): Verify(ipk, cred, m) A Verify(vpk, o, ipk)],
which is independent of the number of accepted issuers, i.e., |PK|.

A remaining technicality is now that the same verifier may accept differ-
ent issuers for different scenarios, which is why every o; needs to be bound
to the specific scenario. Using ephemeral signature keys (vpk, vsk) in each pre-
sentation session would require linear computation for computing and verifying
the signatures; alternatively, a unique key pair per verifier could be used, and
o; & (vsk, (ipk;, domain)) could be bound to a specific application domain. We
finally opted for a combination, where the verifier is still key-less, yet signatures

Issuer-Hiding Attribute-Based Credentials 5

EXP§357CMA ()\)

pp & X ParGen(1*) where:

(sk, pk) & X.KGen(pp) Osign(m):

Q« o & X.Sign(pp, sk, m)
(m*, o) & AdvP=e (pk) Q<+ QU {m}

return 0, if m* € Q return o

return 1, if X Verify(pp, pk,o*,m*) =1

return 0

Exp. 1: EUF-CMA experiment for digital signatures.

on public keys can be reused. This is done by letting the verifier define policies
where a policy consists of signatures on all ipk’s for a specific domain, but differ-
ent signing keys are used for different domains, and thus the respective signing
keys can be discarded after publishing a policy.

We formalize the above intuition through a generic construction, for which
we provide formal security proofs. We then give a concrete instantiation based on
Groth’s structure preserving signature scheme [36]. To ease readability, our basic
construction focuses on the core functionality of anonymous credential systems;
however, we finally also discuss how to achieve advances functionalities including
non-frameability, revocation of credentials, and fine-granular linkability.

Outline. We briefly introduce notation and necessary background in Section 2.
Then, in Section 3 we present the syntax and security requirements for issuer-
hiding ABCs, before giving our generic construction and security proofs in Sec-
tion 4. A concrete instantiation is presented in Section 5 and numerous possible
extensions are discussed in Section 6. We finally conclude in Section 7.

2 Preliminaries

We denote the main security parameter by A\. We write a < A to denote that a is
the output of a potentially randomized algorithm A and v <- S to denote that v
is uniformly sampled at random from a set S. If not explicitly stated otherwise,
all algorithms are assumed to be polynomial-time (PPT).

2.1 Digital Signatures

A digital signature scheme consists of four algorithms:

pp & Y .ParGen(1%) generates public parameters pp.

— (sk,pk) & X .KGen(pp) generates a secret key sk and a public key pk.
o & X.Sign(pp, sk,m) creates a signature o on message m.

— b+ X Verify(pp, pk, o, m) verifies the signature.

Following Goldwasser et al [34], we require a digital signature scheme to be
existentially unforgeable, meaning that no adversary can efficiently come up with
a valid signature on a new message of the adversary’s choice, even if it is given

6 J. Bobolz et al.

access to a signing oracle that may sign an arbitrary number of messages chosen
by the adversary:

Definition 1. A digital signature scheme is EUF-CMA secure if and only if for
every PPT adversary Adv there ezists a negligible function negl such that:

Pr ExpildJVF_CMA()\) = 1} < negl(}),
where the experiment is as defined in Experiment 1.

Structure-preserving signatures. We recall the randomizable structure-preserving
signature scheme by Groth [36]. While the scheme is able to sign matrices of
group elements, we only require it to sign a single group element. Similar to Ca-
menisch et al. [13], we consider the scheme in two variants: Groth; signs elements
of G; (and its public keys live in Gs), and Groth2, which signs elements of Go
(with public keys in G1). We describe Groth;. The other scheme, Groths, can be
obtained easily by switching the roles of G; and Go.

— Groth;.ParGen(1%) generates public parameters pp consisting of a bilinear
group (Gq1,Ga,Gr,e,p, G, G) of prime order p with generators G € G1,G €
Go, and a random element Y & G .

— Groth;.KGen(pp) generates a secret key skgps = v < Zy, and the correspond-

ing public key pk,, =V = G".

sps

— Grothy.Sign(pp, sksps, M) chooses r < Z, and outputs the signature o =
(R,S,T) = (G", (Y - G")M/", (V¥ - M)!/7). 3 ~

— Groth;.Rand(pp, o) chooses r’ ¢ Zy and outputs o’ = (R, S",T") = (R, S/,
Y™,

— Grothy.Verify(pp, pk,s, 0, M) checks that e(S, R) = e(Y,G) - e(G,V) and
e(T,R) = e(Y,V) - e(M,G).

This construction is EUF-CMA secure in the generic group model [36].

2.2 Zero-Knowledge Proofs

A non-interactive zero-knowledge proof of knowledge (NIZK) allows a prover
to generate a cryptographic proof that he knows a secret witness w such that
(x,w) € R for some binary relation R and a public statement z, without reveal-
ing any additional information about w than what is already revealed by x. We
denote the language associated with R by L.

Formally, a NIZK consists of three algorithms:

— pp & I1.ParGen(1?) generates the public parameters pp.

— 7 & I1.Prove(pp, z,w, ctx) generates a non-interactive zero-knowledge proof
of knowledge 7 of w such that (z,w) € R bound to ctx.

— b+ II.Verify(pp, z, ctx, w) verifies a proof 7.

Issuer-Hiding Attribute-Based Credentials 7

ExperJ\?fknowledge(A) where:
(pp,7) < Simy1 (1) Oo(z,w, ctx):
b & {0,1} return 7 & IT.Prove(pp, z, w, ctx), if (z,w) € R
b & Adv© (pp) return L
return 1, if b = b* O1(z,w, ctx):
return 0 return 7 & Sima(pp, 7, z, ctx), if (z,w) € R
return L

Exp. 2: Zero-knowledge experiment for NIZKs.

ExpiidiSoundExt(A)
(pp,T1,¢) & Ext; (1)
Q0 where:
(z*, ctx*, %) & AdvOsm (pp) Osm(z, ctx):
w* & Exta(pp, ¢, ¥, ctx™,) m & Sims(pp, 7, 2, ctx)
return 1, if: Q + QU {(z,ctx)}
I1.Verify(pp, 2™, ctx*, n*) =1, return

(z",w") ¢ R, and
(z*,ctx*) ¢ Q

return 0

Exp. 3: Simulation-sound extractability experiment for NIZKs.

Besides correctness, we will require zero-knowledge and simulation-sound ex-
tractability from all NIZKs.

Informally, the zero-knowledge property ensures that the receiver of a NIZK
does not learn anything beyond what is already revealed by the statement itself.

Definition 2. A non-interactive proof system II satisfies zero-knowledge for
a relation R, if and only if for every PPT adversary Adv there exists a PPT
simulator Sim = (Simy,Simg) such that there exists negligible functions negly
and negly such that:

’Pr [Adv(pp) =1:pp<& H.ParGen(l)‘)]—
Pr [Adv(pp) =1:(pp,7) < Siml(lk)} ’ < negly(\),

and
zero—knowledge 1
Pr [Eprdv (A = 1} ~35 < negly(N),

where the experiment is as defined in Experiment 2.

Intuitively, simulation-sound extractability requires that any adversary that
can generate a valid proof must also know a valid witness for this statement, even
if it has previously seen arbitrarily many (simulated) proofs of potentially false

8 J. Bobolz et al.

statements. Note that the original definition of Groth [35], combining simulation-
soundness [45] and proofs of knowledge [28], is stronger than ours in the sense
that the adversary also gets access to the extraction trapdoor; however, similar
to previous work [1,29,30] the following slightly weaker definition is sufficient
for our purposes. Furthermore, the inclusion of a context ctx essentially makes
the NIZK a signature of knowledge [23].

Definition 3. A zero-knowledge non-interactive proof system Il satisfies simu-
lation-sound extractability for a relation R, if and only if for every PPT adver-
sary Adv there exists a PPT extractor Ext = (Exty, Exty) such that there exists
a negligible function negl such that:

‘Pr [Adv(pp,T) =1:(pp,7) <& Siml(l)\)] -
Pr {Adv(pp,r) =1:(pp,T,¢) <& Extl(l)‘)} ’ =0,

and _
Pr [ExpRyso®()) = 1] < negl()),

where the experiment is as defined in Experiment 3 and Sim = (Simy,Simg) is
as in Definition 2.

For notational convenience, we use the following notation for NIZKs, initially
introduced by Camenisch and Stadler [21]. In this notation, a statement like

NIZK |(a, 8,7) : y1 = g%g5 Ay2 = 9093 Aa >] (ctx)

denotes a non-interactive zero-knowledge proof of knowledge, bound to the con-
text ctx, of values «, 3, such that the relation on the right hand side is satisfied.
We also omit the public proof parameters pp.

3 Framework for Issuer-Hiding ABCs

We next define the syntax for issuer-hiding attribute-based credential systems,
and then formalize the security properties required from such a system.

3.1 Syntax

An issuer-hiding ABC system is specified by eight algorithms. Initially, the pa-
rameters are generated by ParGen. Having generated a key pair using IKGen,
an issuer can then issue credentials on attributes to a user by means of Issue;
users can verify the received credential locally by VfCred in order to detect mal-
formed credentials. To define the set of accepted issuers, a verifier generates a
policy using PresPolicy, which can be checked for well-formedness using VfPolicy
by everyone. Finally, holding a credential from an issuer and a policy from the
verifier, a user uses Present to derive a presentation token, which is verified by
Verify. The inputs and outputs of the algorithms are introduced in the following:

Issuer-Hiding Attribute-Based Credentials 9

Parameter generation. The public parameters are generated as:
pp & ParGen(17).
The public parameters are assumed to be implicit input to all algorithms pre-

sented in the following. We assume pp in particular specifies the number L of
attributes that may be certified per credential, as well as the attribute space A.

Key generation. Issuers compute their respective private and public keys as:
(isk, ipk) < IKGen(pp) .
Issuance. The issuer creates a credential cred on attributes @ as follows:
cred < lssue(isk, @) .

For the sake of simplicity, this process is modeled as a non-interactive algorithm
as opposed an interactive protocol between the issuer and the user.We assume
that both entities have previously set up their respective keys, and that they
agreed on attributes @ = (@, ..., dr) to be certified.

Credential verification. The validity of a credential can be checked as follows:

b <& VfCred(cred, @, ipk) .

Presentation policies. Verifiers can define presentation policies defining sets of
issuers they are willing to accept for certain presentation sessions:

pol < PresPolicy({ipk,}).

Note that pol only defines the sets of issuers accepted by a verifier, but not,
e.g., which attributes a verifier needs to disclose. By this, pol can be reused for
multiple contexts, reducing the number of policies.

Policy verification. Presentation policies can be checked for validity as follows:
b + VfPolicy(pol, {ipk;}) .

Presentation. For practical reasons, we only focus on non-interactive presenta-
tion protocols. Having agreed on a presentation policy which has been verified
by the user, she computes a presentation token:

pt & Present(ipk, cred, ¢, @, pol, ctx) .
The verifier then validates the token as:

b < Verify(pt, ¢, pol, ctx) .

10 J. Bobolz et al.

Here, ¢ : AL — {0,1} is a predicate over the user’s attributes that needs to be
satisfied in order to pass verification, i.e., verification only passes if ¢(d) = 1.
For instance, ¢ might require that some a; equals some previously agreed value,
corresponding to the disclosure of this attribute, or that a; € [l,r] for some
bounds [and r. Finally, the purpose of ctx is to define a context in which the
presentation token is accepted, e.g., a session identifier or a random nonce to
avoid replay attacks or similar.

Policies will typically be long-lived, and it thus not necessary for a user to
verify the policy every time before computing a presentation token. We thus do
not consider these computational costs as part of the verification algorithm.

3.2 Security Definitions

We next define necessary security properties for an issuer-hiding ABC system.

Correctness. We omit a formal definition here, as the requirements are what one
would expect: if all parties follow the protocol specifications during all phases,
any presentation token computed by the user will be accepted by the verifier.

Unforgeability. Unforgeability requires that it is infeasible for an adversary to
generate a valid presentation token, if it has not previously received a credential
on attributes satisfying ¢ from one of the accepted issuers, or a presentation
token for the same (ctx, ¢, pol).

In the following definition, note that while the challenge policy pol® may only
include honest issuers’ keys, the adversary may request presentation tokens for
arbitrary sets of ipk’s from the presentation oracle Opresent, covering the case of
adversarial issuers.

Definition 4. An issuer-hiding ABC system satisfies unforgeability, if and only
if for every PPT adversary Adv and every number of issuers® n there exists a
negligible function negl such that:

Pr Expxgiorgeabi“ty()\,m) = 1} < negl(\),
where the experiment is as defined in Ezxperiment 4.

Unlinkability. Unlinkability requires that no two user actions can be linked by an
adversary. This even needs to hold if the adversary has full control over verifiers,
issuers, and the user’s credential. In the experiment (cf. Experiment 5), we thus
let the adversary output two sets of credentials, attributes, and respective issuers,
as well as a presentation policy pol, a predicate ¢, and the issuers’ public keys.
Upon receiving a presentation token derived from one of the two credentials, the
adversary must not be able to decide which underlying credential was used, as
long as both credentials are valid and consistent with ¢.

5 Parametrizing Experiment 4 by n is for notational convenience only. Modifying the
experiment and the proofs in the remainder of this paper to support an arbitrary
polynomial number of issuers is straightforward.

Exp

Exp

Issuer-Hiding Attribute-Based Credentials

X;iorgeability(A’ nl)
pp & ParGen(1*)
Qissue — @, Qpresent — ®7 Qreveal — @
(isks, ipk;) <& IKGen(pp) for i =1,...,m
([*’ st) ﬁ; Advoissueaopresentaoreveal (pp, {Zpkz}:lﬂ
pol* & PresPolicy(I*)
(pt*, ¢*’ ctx*) <$; AdyOissue Opresent ; Oreveal (St, pol*)
where the oracles are defined as follows:
Oissue (ijy C_i])
cred; & Issue(iski,, d;)
add (ij, Zij) to Qissue
Opresent (J7 p0l7 ¢7 CtX)
add (pOl, ¢, CtX) to Qpresent
return pt & Present(cred;, z'pk:,ij, dj, &, pol, ctx)
Oreveal (J)
add (ij, d}) t0 Qreveal
return cred;
return 1 if:
I C {lpkz}lll
Verify(pt*, pol™, ¢*, ctx*) = 1
(pol™, ", ctx™) & Qpresent
#(ij, @;) € Qrevear such that ¢*(d;) = 1 and ipk;, € I
return 0

Exp. 4: Unforgeability experiment

Unlinkabili
bt)

b <& {0,1}
pp & ParGen(1%)
({Credla 617 il}ll:m pol, ¢, {Zpkz}’ ctx, St) & Adv(pp)
pt* & Present({ipk,}, credy, ¢, G, pol, ctx)
b* & Adv(pt*, st)
return 1 if and only if:
b=1b",
VfCred(creds, a, ipk;,) = 1 for I € {0,1},
¢(a) =1 for I € {0,1}, and
VfPolicy(pol, {ipk,;}) =1
return b’ & {0,1}

Exp. 5: Unlinkability experiment

11

Definition 5. An issuer-hiding ABC system satisfies unlinkability, if and only
if for every PPT adversary Adv there exists a negligible function negl such that:

- 1
P [Bxpl 5 (3) 1] - 5| < negl(h).

where the experiment is as defined in Experiment 5.

12 J. Bobolz et al.

ParGen(1*). Return pp & ¥.ParGen(1%).
IKGen(pp). Return (isk, ipk) & 5.KGen(pp).

Issue(isk, @). Return cred & X.Sign(pp, isk, @).
VfCred(cred, @, ipk). Return 1 if X.Verify(pp, ipk, cred, @) = 1. Otherwise, return 0.

PresPolicy({ipk,}). Generate a signature key pair (vsk, vpk) ¢ 5v.KGen(pp) and com-

pute the signature o; & Xy.Sign(pp, vsk, ipk;). Return

pol = (vpk, {(ipk;,0:)}) .

VfPolicy(pol, {ipk,}). Parse pol as (vpk, {(ipk,;,04)}). Return 1 if and only if

Xy Verify(pp, vpk, 04, ipk;) = 1 for all 7.

Otherwise, return 0.

Present(cred, ipk, @, ¢, pol, ctx). Parse pol as (vpk, {(ipk;,ci)}). Set j such that ipk; =
ipk. Return a presentation token pt as follows:

pt & NIZK([(0, ipk;, cred, @) : Xy Nerify(pp, vpk, 0;, ipk;) =1 A
X Verify(pp, ipk, cred, @) =1 A (1)
¢(a@) = 1](pol, ¢, ctx)

Verify(pt, pol, ®). Return 1 if and only if pt¢ verifies correctly. Otherwise, return 0.

Construction 1: Generic construction of issuer-hiding ABCs.

4 A Generic Construction

The following section describes a generic construction of issuer-hiding attribute-
based credentials, and gives a formal security analysis of its security.

4.1 Construction

Let X = (X.ParGen, X).KGen, X\.Sign, X.Verify) and Xy = (X.ParGen, Xy.KGen,
Xy .Sign, Xy.Verify) be digital signature schemes (cf. Section 2.1) with a common
parameter generation algorithm.

Our generic construction is now depicted in Construction 1. We refer to
Section 1 for a detailed description of the intuition underlying this construction.

4.2 Security Analysis

Theorem 1. If Y| and Xy are EUF-CMA secure and the NIZK is zero-knowledge
and simulation-sound extractable, then Construction 1 is unforgeable.

Intuitively, the adversary has two potential ways of breaking unforgeability: (1)
he can forge a X\ signature on his own public key ipk’ (that is not part of the

Issuer-Hiding Attribute-Based Credentials 13

challenge policy pol*), or (2) he can forge a credential by forging a X signature
w.r.t. some honest issuer’s public key ipk;.

Proof. Let Adv be a PPT adversary. We first modify the unforgeability game by
simulating all NIZK pt output by Opresent- Because the NIZK is zero-knowledge,
this increases the winning probability by at most a negligible amount. In the
following, we argue that Adv’s winning probability in the modified game is neg-
ligible.

In the (modified) unforgeability game, Adv outputs pol™ and (pt*, ¢*). If Adv
wins, we can apply the NIZK extractor to pt* to extract a witness (o, ipk, cred, @).
Let extractfail be the event that Adv wins but the extractor fails to output a
valid witness. Let polforge be the event that Adv wins, the extractor does not
fail, and the extracted ipk is not any honest issuer’s public key, i.e. ipk ¢ {ipk,}.
Let credforge be the event that Adv wins, the extractor does not fail, and the
extracted ipk is one of the honest issuer’s public keys, i.e. ipk € {ipk,}.

It holds that Pr[Adv wins] < Pr[Adv wins A —extractfail] + Prlextractfail] =
Prlpolforge] + Prlcredforge] + Prlextractfail]. Because the NIZK is simulation-
sound extractable, Pr[extractfail] is negligible. We now show that both Pr[polforge]
and Pr|credforge] are negligible, which will conclude this proof.

Type 1 adversaries. We construct an adversary B against Xy\’s EUF-CMA se-
curity.

— B gets pp, pk as input and access to a signing oracle Og;gn.

— B generates (isk;, ipk;) < IKGen(pp) for i = 1,...,n and runs (I*,st) <
AdyPsssue: Opresent, Ovevemn (1, {ipk;}:",). It answers oracle queries honestly using
{iski}.

— B queries Os;g, for signatures o; on ipk; € I*. It sets pol™ = (pk, {(ipk;,0:)})
and runs (pt*, ¢*7 CtX*) & Advoiss\.\eyopresentyoreveal (St, pol*)

— If Adv’s winning condition is not fulfilled, B aborts.

— Otherwise, B extracts a witness (o, ipk, cred, @) from pt*.

— If ipk ¢ {ipk,}, B, it outputs (ipk, o) as a forgery.

By construction, Pr[B wins] = Pr[polforge] (note that if polforge occurs,
B has not queried for a signature on ipk). Because Yy is EUF-CMA secure,
Pr[polforge] is negligible.

Type 2 adversaries. We construct an adversary B against X)’s EUF-CMA secu-
rity.

— B gets pp, pk as input and access to a signing oracle Og;gn.
— B chooses a random k < {1,...,m}.
— B sets ipk, = pk and generates (isk;, ipk;) < IKGen(pp) for i € {1,...,m}\
{k}. Tt runs (I*, st) & Ady©sseme:Opresent: Orevent (g, Ly A1,
o It answers Oigsue(ij, @) by adding (i, @;) t0 Qissue (but not generating
a credential).
o It answers Opresent (J, P0l, ¢, ctx) by creating a simulated NIZK pt (unless

o(;) = 0).

14 J. Bobolz et al.

o It answers Oreyear (j) With cred; as follows: if i; = k, it queries cred; ¢
Osiga(d;). Otherwise, it computes cred; < X.Sign(pp, isk;, , d;). Repeat
reveal queries for j are answered with the same value cred; every time.

— B generates pol® < PresPolicy(I*). Afterwards, it runs (pt*,¢*,ctx*) <&
Advoissue,Opresennorevea1 (St, pol*).
e B answers oracle queries as above.
If Adv’s winning condition is not fulfilled, B aborts.
Otherwise, B extracts a witness (o, ipk, cred, @) from pt*.
If ipk = pk, B outputs (@, o) as a forgery.

Note that the way B answers oracle queries is consistent with the way the
(modified) unforgeability experiment does so.

If credforge A ipk = pk, then (d, o) is a valid forgery. o is a valid signature
on d@ by guarantee of the NIZK extractor. Furthermore, B has not queried for a
signature on @ (because ¢* (@) = 1 by guarantee of the extractor, but the winning
condition guarantees that ¢*(a’) = 0 for all signatures revealed through Oreyear)-
Hence Pr[B wins] > Pr[credforge A ipk = pk] = n% - Prcredforge]. Because X is
EUF-CMA secure, Pr[credforge] is negligible. O

Theorem 2. If NIZK is zero-knowledge, then Construction 1 is unlinkable.

Proof. Because the property follows almost immediately from the zero-knowledge
property, we omit a full proof. Note that the unlinkability experiment ensures
that the witnesses used when computing pt* are valid for both b =0 and b = 1
(for cases where the adversary does not output valid values, the experiment ends
up outputting a random bit, not providing any advantage to the adversary).
This means that the unlinkability experiment is computationally indistinguish-
able from one where pt* is created by the NIZK simulator. In the latter, the
view of Adv is independent of b. a0

5 Concrete Instantiation

One possible instantiation of Construction 1 in Section 4 is with Groth’s structure-
preserving signatures (Section 2.1). This instantiation is inspired by delegatable
credentials [13] where the issue of proving knowledge of a hidden signature on
the hidden public key of another hidden signature also comes up (though in a
different scenario).

Concretely, in this instantiation, the issuer signs attributes using hash-then-
sign with the Pedersen hash H(a@) = H1‘L=1 H" and the structure-preserving
signature scheme Groth,. The verifier signs valid issuer public keys using Groths.
A presentation token is a Schnorr-style proof of knowledge [46] turned non-
interactive using the Fiat-Shamir heuristic [31] which gives us a simulation-sound
extractable NIZK. We assume that the statement and public values are included
in the computation of the challenge in order to avoid malleability issues [6].

With these choices, the scheme works as specified in Construction 2.

Issuer-Hiding Attribute-Based Credentials 15

ParGen(l’\). For e : G1 X G2 — Go as in Groth;.ParGen, choose Y, H; & Gy and
Y & Gs. Define the hash function H : ZL — Gi, H(d) = HiLlefi. Return
pbp = (G17G27GT76 p7G G YY (H)z 1)

IKGen(pp). Generate a Groth; key pair (isk, ipk) = (v, V) & Groth;.KGen(pp).
Issue(isk, @). Return cred = (R, S, T) < Groth,.Sign(pp, v, H(@)).

VfCred(cred, @, ipk). Return whatever Groth,.Verify(pp, V, cred, H(d)) returns.

PresPolicy({ipk,}). Generate (vsk,vpk) = (u,U) <& Grotho.KGen(pp) and o; =
(Ri, Si, Ti) & Grothy.Sign(pp, u, ipk;). Return pol = (U, {(ipk;,0:)}).

VfPolicy(pol, {ipk,}). Parse pol as (vpk, {(ipk;, 0:)}). Return 1 if
Grotha.Verify(pp, vpk, o, ipk,;) = 1 for all i. Otherwise, return 0.

Present(cred, ipk, @, ¢, pol, ctx). Parse pol as (vpk,{(ipk;,0:)}). Let j be the index of
the credential’s issuer’s public key, i.e., ipk; = ipk. Randomize cred and o; as

(R, S, T) & Groth;.Rand(pp, cred) and (R;,S;,T;) < Groths.Rand(pp, ;) .

Choose random blinding values «, 3,7, ¢ & Z, and compute
— the blinded credential (R, S, T") := (R, SY/*,T'/#) on H(&) under the issuer’s
key ipk;

— the issuer’s blinded key ipk' : zpkl/'Y

— the blinded policy signature (R;,S;,T}) := (R;,S;,T;/°) on V; under the
verifier’s public key vpk
Compute a Schnorr-style proof :
7 & NIZK([(a, 8, 7.0, @) :
Groth; credential check: e(S’, R)* = e(Y, G) - e(G, z'pk;r)'Y A

L
Groth, credential check: e(T”, R)? = e(Y, ipk’;)” -e(H HY G) A
=1
Groths policy check: e(R;) e(G,) (vpk,é) A

Groths policy check: e(R;, T))° = e(vpk,Y) - e(G, ipk)" A
Attribute check: ¢(@) = 1](pol, ¢, ctx)

Finally, return pt = ((R,S’,T"), ipk’;, (Rj, S;, T,).

J7g

Verify(pt, pol, #). Return 1 if and only if pt¢ verifies correctly. Otherwise, return 0.

Construction 2: Concrete instantiation of our generic construction.

5.1 Security Analysis

Theorem 3. If Groth; and Grothy are EUF-CMA secure and the NIZK is zero-
knowledge and simulation-sound extractable, then the concrete instantiation in
Construction 2 is unforgeable and unlinkable.

16 J. Bobolz et al.

Runtime G Gz2| G |Pairings
PresPolicy (10 issuers)| 14 ms| 3027| 11448| 0 100
PresPolicy (100 issuers)| 115 ms|27666({115430(O 0
VfPolicy (10 issuers) 3 ms 0 0] 20 60
VfPolicy (100 issuers)| 27 ms 0 0]200 600
Issue 2 ms| 1684 278] 0 0
Present 4 ms| 3327| 1206 4 7
Verify 3 ms| 2398 0[901 12

Table 1: Performance of Construction 2 on a Macbook Pro (19-9980HK) with
BN254 as the bilinear group. Other columns show the (device-independent) num-
ber of group operations (multiply and square operations, including those hap-
pening within exponentiations) and pairings performed.

Unforgeability and unlinkability follow from the generic construction’s unforge-
ability and unlinkability, which we’re instantiating.

If Groth; is EUF-CMA secure, then also the hash-then-sign version of it
(which is what we are effectively using in the concrete construction) is EUF-CMA
secure (under the discrete logarithm assumption, which is implied by security
of Grothy, the hash function H is collision-resistant). It remains to argue that
Present is a good instantiation of the NIZK specified in the generic construction.

For the zero-knowledge property, pt = ((R, ST, ipk;», (Rj,gj,f;),ﬁ) can
be simulated by choosing random S’,T”, ipk;- & Gy and R, TJ’ & G, setting
(R;,S;) = ({,S%/T) for random r & Z% (where (Ry,S1,-) = ipk,), and then
simulating a corresponding 7 using the NIZK simulator.

For the proof of knowledge property, note that from 7 one can extract
, 3,7, 8, @ with properties that guarantee that cred := (R, (5")*, (T")?) is a valid
Groth; signature on H(a@) under ipk; := (ipk’;)” and that o; := (R;, S;, (T]')‘S) is
a valid Grothy signature on ipk; under vpk, and that ¢(@) = 1. This means that
we can extract a valid witness o, ipk;, cred, @ from pt, as required.

5.2 Performance Evaluation

To practically evaluate our construction, we have implemented” a benchmarking
prototype of Construction 2 using the Cryptimeleon library [9]. The results are
shown in Table 1. For credentials, we are considering L. = 10 random attributes,
none of which are disclosed during presentation (which is the most expensive case
of partial attribute disclosure). The policy consists of 10 or 100 valid issuers. This
does not affect token verification, which is independent of policy size. Overall,
performance is practical, especially given that VfPolicy only has to be run once
for each new policy and can be delegated to a trusted party.

The sizes of all keys and tokens can be found in Table 2.

" Code available at https://github.com/cryptimeleon/issuer-hiding-cred.

https://github.com/cryptimeleon/issuer-hiding-cred

Issuer-Hiding Attribute-Based Credentials 17

| G | G | Gr | Z
Issuer secret key (isk) - - - 1
Issuer public key (ipk) - 1 - -
Credential (cred) 2 1 - -
Presentation policy (pol)| I+1 31 - -
Presentation token (pt) 3 4 - L+5

Table 2: Number of group elements for the different keys and tokens in Con-
struction 2, where I is the number of issuer keys accepted by a verifier, and L
is the number of attributes certified in the credential.

6 Extensions

To simplify presentation, our main construction only focuses on the key func-
tionality of an issuer-hiding ABC system. In the following, we discuss in detail
how to achieve non-frameability and anonymity revocation, controlled linkabil-
ity and pseudonyms, and credential revocation. Further extensions like updating
of credentials [8] or advanced predicates over attributes [5,40] are omitted here
because of space limitations.

Anonymity revocation and non-frameability. While ABCs are important to pro-
tect the users’ privacy and related fundamental rights, the high anonymity guar-
antees may lead to misuse of credentials and associated rights. In order to pre-
vent such misuse, anonymity revocation (or inspection) is an important advanced
functionality. Anonymity revocation allows a predefined opener (or inspector) to
identify the originator of a given presentation token pt [12,18]. Closely related to
this is the notion of non-frameability, which guarantees that even if issuers and
the opener collude, it is infeasible for them to convince any third party that a
specific user computed a given pt unless she indeed did so. This notion is closely
related to non-frameability for group signatures [10, 26, 39].

This feature is achieved by letting the user generate a secret private key
(upk, usk) < UKGen(pp), and the opener a key pair (opk, osk) ¢ IKGen(pp)
for an encryption scheme I'. Upon issuance, the user would now embed upk
as an additional attribute which is signed by the issuer. When computing a
presentation token, the user would treat upk as an undisclosed attribute, yet still
prove that she knows the corresponding usk. Furthermore, she would encrypt upk
under the opener’s key as enc < I'.Enc(upk, opk), and prove that enc contains
the same upk which is also certified in the credential.

More formally, the basic presentation token would then be extended as follows
(changes to Eq. (1) are highlighted):

pt & NIZK[(0, ipk ;, cred, @, upk,usk,r) : Xy .Verify(pp, vpk, 0, ipk;) =1 A
X\ Verify(pp, ipk;, cred, (@, upk)) =1 A VfUKey(upk,usk) =1 A
enc = I'.Enc(upk, opk;r) A ¢(@) = 1](pol, ¢, ctx)

18 J. Bobolz et al.

where VfUKey(upk, usk) = 1 if and only if usk is the corresponding secret key for
upk, and r denotes the random coins used for encryption. To inspect, the opener
can now decrypt enc and prove that the decryption was performed correctly.

As a concrete instantiation compatible with our generic construction, the
user’s key pair could be (upk, usk) := (¢%, x), and the corresponding encryption
scheme could be ElGamal encryption [?].

Controlled linkability. In the case of stateful applications, for instance, users
may wish to be recognized yet not identified by a verifier. This can be achieved
by using scope-exclusive pseudonyms [16], in which pseudonyms can be linked
within a given scope, but not across different scopes. For a pseudonym system
¥ with user secret key usk, the users’ public key would be upk < ¥.Gen(usk, ¢),
which similar to before is embedded into the credential. For a given scope sc,
the user now shares nym = W.Gen(usk, sc) with the verifier, and proves that this
is consistent with the (undisclosed) upk.

The presentation token would now be computed as follows:

pt & NIZK([(0;, ipk;, cred, @, upk,usk) : Xy Verify(pp, vpk, 0, ipk;) =1 A
X\ Verify(pp, ipk;, cred, (@, upk)) =1 N upk = ¥.Gen(usk,e) A

nym = W.Gen(usk,sc) A ¢(a) = 1](pol, ¢, ctx, sc, nym)

A possible instantiation compatible with our construction is based on the
pseudonym system by Camenisch et al. [16], where a pseudonym for a scope is
computed as nym := H(sc)“* for a random oracle H.

Revocation. In case of misuse, loss of privileges, or compromise of a credential,
it may become necessary to invalidate an issued credential. Many approaches
for revocation of anonymous credentials can be found in the literature. In the
following we show how to incorporate an approach along the lines of Nakanishi
et al. [42] into our solution. Their work follows a black-listing approach, where
each credential contains a revocation handle rh which is never disclosed upon
presentation. The revocation authority, holding a signature key pair (rpk, rsk),
issues intervals [a;, b;] of currently still valid revocation handles, together with
signatures «; < Xr.Sign(pp, rsk,a;) and B; < Xr.Sign(pp, rsk,b;). When com-
puting a presentation token, the user now proves that the revocation handle
embedded in her credential lies in some interval [a;,b;] for which she knows
corresponding signatures a; and ;. However, it may be the case that multiple
revocation authorities, e.g., one per issuer, exist in our setting. We thus not only
embed the rh but also the revocation authority’s public key rpk as attributes in
our credentials, and the user shows that the known signatures on the interval
boundaries verify under this (undisclosed) signature key.

Issuer-Hiding Attribute-Based Credentials 19

More formally, a presentation token would now be derived as follows:
pt & NIZK[(0, ipk;, cred, @, rpk,rh,a, B,a,b) : Dy Verify(pp, vpk, 0, ipk;) =1 A
X1 Verify(pp, ipk;, cred, (@, rh,rpk)) =1 A
YR Verify(pp, rpk,a,a) =1 A Xr.Verify(pp, rpk, 8,0) =1 A
rh € [a,b] A ¢(@) = 1](pol, ¢, ctx)

7 Conclusion & Future Work

We introduced the notion of issuer-hiding anonymous credential system, which
allows for a dynamic and ad-hoc definition of sets of issuers among whose cre-
dentials a user may stay anonymous during presentation—a feature with various
application domains, ranging from student identities over national eIDs to re-
mote attestation. We provided a generic construction where the communication
and computational complexity during presentation is independent of the number
of issuers, as well as an efficient instantiation.

Nevertheless, we identified some open research questions. While our construc-
tion requires a minor joint setup across different issuers to define some group
generators and the number of attributes L, in real applications, e.g., different
nation states may wish to include different numbers of attributes in their cre-
dentials, vary the order of attributes, or use alternative generators for security
reasons. It would be interesting to see whether this can be achieved more ef-
ficiently than via the generic or-composition discussed in Section 1. Also, the
size of verifier policies is currently linear in the number of accepted issuers. One
approach to overcome this limitation could be to add the accepted public keys
to an accumulator, for which users, knowing all accumulated values, could com-
pute the witnesses themselves, resulting in constant-size policies if the ipk’s are
assumed to be known. Instead of proving knowledge of a signature from the
verifier, users would now prove that they know a witness for the public key
that issued the credential. However, we are not aware of any accumulator and
compatible signature scheme allowing for an efficient instantiation.

Acknowledgments. This work was in parts supported by the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
871473 (KRAKEN) and 830929 (CYBERSEC4EUROPE), and by the German
Research Foundation (DFG) within the Collaborative Research Centre On-The-
Fly Computing (GZ: SFB 901/3) under the project number 160364472.

References
1. Abe, M., David, B., Kohlweiss, M., Nishimaki, R., Ohkubo, M.: Tagged one-time

signatures: Tight security and optimal tag size. In: Kurosawa, K., Hanaoka, G.
(eds.) PKC 2013. Springer, Heidelberg (Feb / Mar 2013)

20

10.

11.

12.

13.

14.

15.

16.

17.

18.

J. Bobolz et al.

. Abraham, A., Hérandner, F., Omolola, O., Ramacher, S.: Privacy-preserving eID

derivation for self-sovereign identity systems. In: Zhou, J., Luo, X., Shen, Q., Xu,
Z. (eds.) ICICS 19. Springer, Heidelberg (Dec 2019)

Abraham, A., Theuermann, K., Kirchengast, E.: Qualified eid derivation into a
distributed ledger based idm system. In: TrustCom/BigDataSE. IEEE (2018)
Belenkiy, M., Camenisch, J., Chase, M., Kohlweiss, M., Lysyanskaya, A., Shacham,
H.: Randomizable proofs and delegatable anonymous credentials. In: Halevi, S.
(ed.) CRYPTO 2009. Springer, Heidelberg (Aug 2009)

Bemmann, K., Blémer, J., Bobolz, J., Brocher, H., Diemert, D., Fidens, F., Eilers,
L., Haltermann, J., Juhnke, J., Otour, B., Porzenheim, L., Pukrop, S., Schilling,
E., Schlichtig, M., Stienemeier, M.: Fully-featured anonymous credentials with rep-
utation system. In: ARES. ACM (2018)

Bernhard, D., Pereira, O., Warinschi, B.: How not to prove yourself: Pitfalls of
the Fiat-Shamir heuristic and applications to Helios. In: Wang, X., Sako, K. (eds.)
ASTACRYPT 2012. Springer, Heidelberg (Dec 2012)

Blomer, J., Bobolz, J.: Delegatable attribute-based anonymous credentials from
dynamically malleable signatures. In: Preneel, B., Vercauteren, F. (eds.) ACNS
18. Springer, Heidelberg (Jul 2018)

Blomer, J., Bobolz, J., Diemert, D., Eidens, F.: Updatable anonymous credentials
and applications to incentive systems. In: Cavallaro, L., Kinder, J., Wang, X., Katz,
J. (eds.) ACM CCS 2019. ACM Press (Nov 2019)

Bobolz, J., Eidens, F., Heitjohann, R., Fell, J.: Cryptimeleon: A library for fast
prototyping of privacy-preserving cryptographic schemes. IACR ePrint (2021)
Bootle, J., Cerulli, A., Chaidos, P., Ghadafi, E., Groth, J.: Foundations of fully
dynamic group signatures. In: Manulis, M., Sadeghi, A.R., Schneider, S. (eds.)
ACNS 16. Springer, Heidelberg (Jun 2016)

Brands, S.: Rethinking Public Key Infrastructure and Digital Certificates —
Buildingin Privacy. Ph.D. thesis, Eindhoven Institute of Technology (1999)
Camenisch, J.: Concepts around privacy-preserving attribute-based credentials -
making authentication with anonymous credentials practical. In: Privacy and Iden-
tity Management. Springer (2013)

Camenisch, J., Drijvers, M., Dubovitskaya, M.: Practical UC-secure delegatable
credentials with attributes and their application to blockchain. In: Thuraisingham,
B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017. ACM Press (Oct / Nov
2017)

Camenisch, J., Drijvers, M., Lehmann, A., Neven, G., Towa, P.: Short threshold
dynamic group signatures. In: Galdi, C., Kolesnikov, V. (eds.) SCN 20. Springer,
Heidelberg (Sep 2020)

Camenisch, J., Dubovitskaya, M., Haralambiev, K., Kohlweiss, M.: Composable
and modular anonymous credentials: Definitions and practical constructions. In:
Iwata, T., Cheon, J.H. (eds.) ASTACRYPT 2015, Part II. Springer, Heidelberg
(Nov / Dec 2015)

Camenisch, J., Krenn, S., Lehmann, A., Mikkelsen, G.L., Neven, G., Pedersen,
M.@.: Formal treatment of privacy-enhancing credential systems. In: Dunkelman,
0., Keliher, L. (eds.) SAC 2015. Springer, Heidelberg (Aug 2016)

Camenisch, J., Lehmann, A., Neven, G., Rial, A.: Privacy-preserving auditing for
attribute-based credentials. In: Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014,
Part II. Springer, Heidelberg (Sep 2014)

Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: Pfitzmann, B. (ed.) EU-
ROCRYPT 2001. Springer, Heidelberg (May 2001)

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Issuer-Hiding Attribute-Based Credentials 21

Camenisch, J., Lysyanskaya, A.: A signature scheme with efficient protocols. In:
Cimato, S., Galdi, C., Persiano, G. (eds.) SCN 02. Springer, Heidelberg (Sep 2003)
Camenisch, J., Lysyanskaya, A.: Signature schemes and anonymous credentials
from bilinear maps. In: Franklin, M. (ed.) CRYPTO 2004. Springer, Heidelberg
(Aug 2004)

Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups
(extended abstract). In: Kaliski Jr., B.S. (ed.) CRYPTO’97. Springer, Heidelberg
(Aug 1997)

Camenisch, J., Van Herreweghen, E.: Design and implementation of the idemix
anonymous credential system. In: Atluri, V. (ed.) ACM CCS 2002. ACM Press
(Nov 2002)

Chase, M., Lysyanskaya, A.: On signatures of knowledge. In: Dwork, C. (ed.)
CRYPTO 2006. Springer, Heidelberg (Aug 2006)

Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM 24(2), 84-88 (1981)

Chaum, D.: Security without identification: Transaction systems to make big
brother obsolete. Commun. ACM 28(10), 1030-1044 (1985)

Chen, L., Pedersen, T.P.: New group signature schemes (extended abstract). In:
Santis, A.D. (ed.) EUROCRYPT’94. Springer, Heidelberg (May 1995)

Crites, E.C., Lysyanskaya, A.: Delegatable anonymous credentials from mercurial
signatures. In: Matsui, M. (ed.) CT-RSA 2019. Springer, Heidelberg (Mar 2019)
De Santis, A., Persiano, G.: Zero-knowledge proofs of knowledge without inter-
action (extended abstract). In: 33rd FOCS. IEEE Computer Society Press (Oct
1992)

Derler, D., Krenn, S., Samelin, K., Slamanig, D.: Fully collision-resistant
chameleon-hashes from simpler and post-quantum assumptions. In: Galdi, C.,
Kolesnikov, V. (eds.) SCN 20. Springer, Heidelberg (Sep 2020)

Dodis, Y., Haralambiev, K., Lépez-Alt, A., Wichs, D.: Efficient public-key cryp-
tography in the presence of key leakage. In: Abe, M. (ed.) ASTACRYPT 2010.
Springer, Heidelberg (Dec 2010)

ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31, 469-472 (1985)

Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification
and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO’86. Springer, Heidelberg
(Aug 1987)

de Fuentes, J.M., Gonzéalez-Manzano, L., Serna-Olvera, J., Veseli, F.: Assessment
of attribute-based credentials for privacy-preserving road traffic services in smart
cities. Pers. Ubiquitous Comput. 21(5), 869-891 (2017)

Garman, C., Green, M., Miers, I.: Decentralized anonymous credentials. In:
NDSS 2014. The Internet Society (Feb 2014)

Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM Journal on Computing 17(2), 281-308
(Apr 1988)

Groth, J.: Simulation-sound NIZK proofs for a practical language and constant
size group signatures. In: Lai, X., Chen, K. (eds.) ASTACRYPT 2006. Springer,
Heidelberg (Dec 2006)

Groth, J.: Efficient fully structure-preserving signatures for large messages. In:
Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015, Part I. Springer, Heidelberg
(Nov / Dec 2015)

22

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

J. Bobolz et al.

Habock, U., Krenn, S.: Breaking and fixing anonymous credentials for the cloud.
In: Mu, Y., Deng, R.H., Huang, X. (eds.) CANS 19. Springer, Heidelberg (Oct
2019)

Khovratovich, D., Law, J.: Sovrin: digitial signatures in the blockchain area (2016),
https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf

Krenn, S., Samelin, K., Striecks, C.: Practical group-signatures with privacy-
friendly openings. In: ARES. ACM (2019)

Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments.
In: Laih, C.S. (ed.) ASTACRYPT 2003. Springer, Heidelberg (Nov / Dec 2003)
Moreno, R.T., Bernabé, J.B., Rodriguez, J.G., Frederiksen, T.K., Stausholm, M.,
Martinez, N., Sakkopoulos, E., Ponte, N., Skarmeta, A.F.: The OLYMPUS archi-
tecture - oblivious identity management for private user-friendly services. Sensors
20(3), 945 (2020)

Nakanishi, T., Fujii, H., Hira, Y., Funabiki, N.: Revocable group signature schemes
with constant costs for signing and verifying. In: Jarecki, S., Tsudik, G. (eds.)
PKC 2009. Springer, Heidelberg (Mar 2009)

Paquin, C., Zaverucha, G.: U-prove cryptographic specification v1.1 (revision2).
Technical report, Microsoft Corporation (Apr 2013)

Ringers, S., Verheul, E.R., Hoepman, J.H.: An efficient self-blindable attribute-
based credential scheme. In: Kiayias, A. (ed.) FC 2017. Springer, Heidelberg (Apr
2017)

Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: 40th FOCS. IEEE Computer Society Press (Oct 1999)
Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology
4(3), 161-174 (Jan 1991)

Sonnino, A., Al-Bassam, M., Bano, S., Meiklejohn, S., Danezis, G.: Coconut:
Threshold issuance selective disclosure credentials with applications to distributed
ledgers. In: NDSS 2019. The Internet Society (Feb 2019)

Yang, R., Au, M.H., Xu, Q., Yu, Z.: Decentralized blacklistable anonymous cre-
dentials with reputation. In: Susilo, W., Yang, G. (eds.) ACISP 18. Springer, Hei-
delberg (Jul 2018)

https://sovrin.org/wp-content/uploads/AnonCred-RWC.pdf

	Issuer-Hiding Attribute-Based Credentials
	Introduction
	Preliminaries
	Digital Signatures
	Zero-Knowledge Proofs

	Framework for Issuer-Hiding ABCs
	Syntax
	Security Definitions

	A Generic Construction
	Construction
	Security Analysis

	Concrete Instantiation
	Security Analysis
	Security
	Performance Evaluation

	Extensions
	Conclusion & Future Work

