

This project has received funding from the European Union’s Horizon 2020 (H2020)
research and innovation programme under the Grant Agreement no 871473

www.krakenh2020.eu

BROKERAGE AND MARKET PLATFORM
FOR PERSONAL DATA

D5.6 KRAKEN Marketplace Final Release

D5.6 KRAKEN Marketplace Final Release

Grant agreement 871473

Work Package Leader LYNKEUS

Author(s) Rob Holmes (TEX)

Contributors Donato Pellegrini (TEX), Giorgi Sheklashvili (TEX), Rosario Meyer (TEX),

Davide Porro (ICERT), Sebastian Ramacher (AIT), Davide Zaccagnini

(LYNK), Mark Tilen (XLAB), Javier Presa (Atos), Juan Carlos Pérez (Atos)

Reviewer(s) Davide Zaccagnini (LYNK), Sebastian Ramacher (AIT)

Version Final

Due Date 31/07/2022

Submission Date 27/07/2022

Dissemination Level Public

Copyright

© KRAKEN consortium. This document cannot be copied or reproduced, in whole or in part for any
purpose without express attribution to the KRAKEN project.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 3

Release History

Version Date Description Released by

v0.1 27/04/2022 Initial draft ToC Rob Holmes

v0.2 06/05/2022 Updated ToC and inclusion of AIT Privacy

Metrics inputs

Rob Holmes

v0.3 21/06/2022 Inclusion of all partner inputs Rob Holmes

v0.4 29/06/2022 Version for peer review Rob Holmes

v0.5 11/07/2022 Review by Davide Zaccagnini & Sebastian

Ramacher

Davide Zaccagnini,

Sebastian Ramacher

v0.6 22/07/2022 Amended following review comments and

ready for final quality check

Rob Holmes

v1.0 27/07/2022 Submitted version Atos

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 4

Table of Contents

1 Introduction ... 12

1.1 Purpose of the document .. 12

1.2 Structure of the document .. 12

2 Marketplace Final Release Overview ... 13

2.1 Technology Components Used in the Final Marketplace Release ... 13

2.2 Major developments provided in first marketplace release ... 16

2.3 Major developments undertaken in final marketplace release .. 16

2.4 Updates to web-based marketplace user flows .. 20

2.5 Final marketplace release architecture ... 20

3 Marketplace Backend API .. 22

3.1 Description ... 22

3.2 Interfaces ... 22

3.3 Deployment.. 24

3.4 Source Code ... 24

3.5 Baseline Technology and Tools .. 25

4 Marketplace Catalogue Database .. 26

4.1 Description ... 26

4.2 Interfaces ... 26

4.3 Deployment.. 32

4.4 Source Code ... 32

4.5 Baseline Technologies and Tools ... 32

5 Marketplace Frontend ... 33

5.1 Description ... 33

5.2 Interfaces ... 40

5.3 Deployment.. 42

5.4 Source Code ... 42

5.5 Baseline Technologies and Tools ... 42

6 Marketplace Smart Contract .. 43

6.1 Description ... 43

6.2 Interfaces ... 43

6.3 Deployment.. 46

6.4 Source Code ... 47

6.5 Baseline Technologies and Tools ... 47

7 Marketplace xDai Watcher .. 48

7.1 Description ... 48

7.2 Interfaces ... 48

7.3 Deployment.. 48

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 5

7.4 Source Code ... 48

7.5 Baseline Technologies and Tools ... 48

8 Data Union Joining Server .. 50

8.1 Description ... 50

8.1.1 Development .. 50

8.2 Interfaces ... 50

8.3 Deployment.. 50

8.4 Source Code ... 50

8.5 Baseline Technologies and Tools ... 51

9 Data Union Smart Contract .. 52

9.1 Description ... 52

9.2 Interfaces ... 52

9.3 Deployment.. 52

9.4 Source Code ... 53

9.5 Baseline Technologies and Tools ... 53

10 Streamr Network Integration ... 54

10.1 Description .. 54

10.2 Interfaces .. 54

10.3 Deployment .. 54

10.4 Source Code .. 55

10.5 Baseline Technologies and Tools .. 55

11 Consortium Blockchain Node ... 56

11.1 Description .. 56

11.2 Interfaces .. 56

11.3 Deployment .. 58

11.4 Source Code .. 59

11.5 Baseline Technologies and Tools .. 60

11.5.1 Private Network ... 60

11.5.1 Cache Database ... 60

11.5.1 Smart Contracts ... 60

11.5.1 Application ... 60

11.5.1 Documentation .. 60

12 Marketplace Mobile App ... 61

12.1 Description .. 61

12.2 Interfaces .. 62

12.3 Deployment .. 62

12.4 Baseline Technologies and Tools .. 62

13 MPC Node .. 63

13.1 Description .. 63

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 6

13.2 Interfaces .. 63

13.3 Deployment .. 63

13.4 Source Code .. 63

13.5 Baseline Technologies and Tools .. 63

14 Marketplace SSI Agent uSelf Broker .. 65

14.1 Description .. 65

14.2 Interfaces .. 65

14.3 Deployment .. 66

14.4 Source Code .. 66

15 KRAKEN Company Depute Tool ... 67

15.1 Description .. 67

15.2 Interfaces .. 68

15.3 Deployment .. 69

15.4 Source Code .. 69

16 KRAKEN Company Identification Tool .. 70

16.1 Description .. 70

16.2 Interfaces .. 71

16.3 Deployment .. 71

16.4 Source Code .. 71

17 KRAKEN Revocation & Endorsement Registry ... 73

17.1 Description .. 73

17.2 Interfaces .. 73

17.3 Deployment .. 73

17.4 Source Code .. 73

18 Privacy Metrics Tool ... 74

18.1 Description .. 74

18.1.1 Description ... 74

18.1.2 Dataset Independent Inputs .. 75

18.1.3 Privacy Value .. 77

18.2 Interfaces .. 77

18.3 Deployment .. 77

18.4 Source Code .. 77

18.5 Baseline Technology and Tools ... 78

19 Conclusion .. 79

20 References .. 80

21 Annex 1: Selecting Privacy Metrics for KRAKEN ... 81

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 7

List of Tables

Table 1: CA Client API Tasks .. 58

Table 2: Peer API Tasks.. 58

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 8

List of Figures

Figure 1: Deployment and hosting of integrated technology components in KRAKEN marketplace 15

Figure 2: Process flow for creating and publishing the Data Union in the KRAKEN marketplace 18

Figure 3: Process flow for members joining the Data Union ... 19

Figure 4: Process flow for purchasing access to a Data Union in the KRAKEN marketplace 19

Figure 5: Full Marketplace architecture for KRAKEN Final Release ... 21

Figure 6: Automated code deployment ... 24

Figure 7: Marketplace registration form for data subjects or natural persons representing a company 33

Figure 8: Browsing the KRAKEN marketplace data catalogue .. 34

Figure 9: Publishing and setting preferences for access to batch Data Products .. 34

Figure 10: Option to check privacy rating prior to publishing a batch Data Product .. 35

Figure 11: Part of the analytics Data Product publishing workflow .. 36

Figure 12: Computation basket for purchasing analytics Data Products .. 36

Figure 13: Part of the Data Union publication workflow, showing functionality to browse and add data streams
to the Data Product ... 37

Figure 14: Option to delete a Data product in user’s dashboard .. 38

Figure 15: Personal Dashboard showing a buyer’s purchased Data Products .. 38

Figure 16: Dashboard page showing users subscribed to a data provider’s Data Products 39

Figure 17: A view of the invoice generated when a user opts to pay with fiat for batch Data Products only 39

Figure 18: Option to delete a marketplace user’s account.. 40

Figure 19: Individual network nodes ... 59

Figure 20: User login to the KRAKEN Marketplace Mobile Application .. 61

Figure 21: Data Products search in the KRAKEN Marketplace Mobile Application ... 61

Figure 22: View of active subscriptions to Data Products in the Marketplace Mobile Application 62

Figure 23: Ledger uSelf Broker deployment .. 66

Figure 24: Depute Tool Components ... 68

Figure 25: Depute Tool Components ... 69

Figure 26: KCIT Components ... 70

Figure 27: KCIT web interface.. 71

Figure 28: Dataset independent inputs to compute the privacy metrics .. 75

Figure 29: Dataset dependent inputs for the privacy metrics ... 76

Figure 30: Example result from the privacy metrics computation .. 77

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 9

List of Acronyms

Acronym Description

API Application Programming Interface

APK Android Package Kit

AWS Amazon Web Services

BSD Berkeley Software Distribution

CA Certificate Authority

CSV Comma-Separated Values

D Deliverable

DID Decentralized Identifier

EBSI European Blockchain Services Infrastructure

ERC-20 Ethereum Request for Comments-20

EU European Union

GPS Global Positioning System

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

ID Identifier

JS-NaCI Java Script-Networking and Cryptography library

JSON JavaScript Object Notation

KCIT KRAKEN Company Identification Tool

KRER KRAKEN Revocation & Endorsement Registry

MSP Managed Service Provider

MESH Medical Subject Headings

MHMD My Health My Data

MPC Multi Party Computation

QR Quick Response (Code)

REST Representational State Transfer

SSI Self Sovereign Identity

T Task

TLS Transport Layer Security

TPS Transactions Per Second

URL Uniform Resource Locator

VC Verifiable Credential

VM Virtual Machine

WP Work Package

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 10

Executive Summary

This document describes the software of the final KRAKEN marketplace implementation, covering all
modules, programs and tools used for the final marketplace release. It is the final deliverable of Task
5.4 – Backend/Frontend Development within Work Package 5 – Reference platform implementation,
pilot’s integration and validation.

The general objective of Work Package 5 is to design and develop a fully functional data marketplace
and for the KRAKEN general infrastructure to be tested in the health and education pilots. This final
marketplace release consists of an integrated infrastructure that facilitates the exchange of data using
three data exchange modalities. The first is the encrypted batch data transfer through directory
sharing, the second is privacy-preserving analytics using MPC, and finally the third is data streams
managed under the Data Unions framework (See Section 2.3).

Deliverable 5.6 provides a description of each component used within the final marketplace release,
describing the interfaces, deployment guidance, source codes and background technologies and tool
usage.

A short description of the components described in this document is provided below:

• Marketplace Backend API (Section 3)
o A REST API that acts as the central component of the KRAKEN marketplace, it handles

all requests that are received or need to be sent to all other components within the
marketplace architecture.

• Marketplace Catalogue Database (Section 4)
o A sub-component of the marketplace backend used to store all associated information

or metadata related to Data Products published within the KRAKEN marketplace or a
user’s account.

• Marketplace Frontend (Section 5)
o A component of the marketplace that users directly interact with to perform all of the

marketplace operations. Examples include registration, login, Data Products
publication, browsing and purchase.

• Marketplace Smart Contract (Section 6)
o Registers published Data Products on the xDai blockchain, allowing marketplace users

to send payments to data providers using an ERC-20 token (DATA).

• Marketplace xDai Watcher (Section 7)
o Provides the Marketplace Backend API with information about new events occurring

on the Marketplace Smart Contract on the xDai blockchain. New events could be Data
Product publications, modifications or subscriptions (purchases).

• Data Union Joining Server (Section 8)
o Handles new Data Union member join requests, adding members’ wallet addresses to

the Data Union Smart Contract so that revenues in cryptocurrency can be tracked and
withdrawn by Data Union members.

• Data Union Smart Contract (Section 9)
o A Data Union Data Product is deployed on the Data Union Smart Contract, which

facilitates the allocation of shares of payments to members of the Data Union.

• Streamr Network (Section 10)
o A third-party component for transporting data streams associated with KRAKEN Data

Union Data Products over a decentralized scalable real-time messaging network.

• Lynkeus Permissioning Blockchain Node (Section 11)
o The Lynkeus blockchain is used for data access permissions and policies management

and enforcement. It determines data consumer eligibility to access Data Products by
performing a check on the stored permissions and policies.

• Marketplace Mobile App (Section 12)

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 11

o Provides marketplace users with a mobile environment to allow them to quickly
browse Data Products, change permissions and availability of their own Data Products
and see how well their Data Products are performing on the data market.

• MPC Node (Section 13)
o The MPC Network provides a mechanism for key distribution and to perform secure

distributed computation / analytics on published analytics Data Products.

• Marketplace SSI Agent Ledger uSelf Broker (Section 14)
o Facilitates interactions between the marketplace and mobile KRAKEN SSI application

for processes related to establishing a DID connection, issuing a credential and
presenting a proof.

• KRAKEN Company Depute Tool (Section 15)
o A tool used by companies to manage natural persons acting on behalf of a company.

Allows a company to authorize its employee to perform operations in the KRAKEN
marketplace on its behalf.

• KRAKEN Company Identification Tool (Section 16)
o A tool used by the KRAKEN platform to manage the active list of companies that are

currently delegating their employees to operate on behalf of the company they work
for.

• The KRAKEN Revocation & Endorsement Registry (Section 17)
o This component stores information related to the validity of the verifiable credentials

(or Verifiable Presentations), such as the status (valid, revoked, suspend).

• Privacy Metrics Tool (Section 18)
o A tool used by users of the KRAKEN marketplace to quantify the level of privacy that

data subjects can expect when sharing their batch Data Products within the
marketplace.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 12

1 Introduction

1.1 Purpose of the document

The aim of this Deliverable 5.6 KRAKEN marketplace Final Release (D5.6) document is to provide an
overview of the final software components that together constitute the KRAKEN Marketplace, which
is the core development item in Work Package (WP) 5, Task (T) 5.4.

As some of the final software components presented in this document were already presented in the
previous submitted deliverable in this series (D5.5 KRAKEN Marketplace Initial Release [1]), some
Sections of this report will repeat information that was already reported in D5.5 for completeness. But
many of these components have been advanced and extended with additional functionalities since the
previous D5.5 submission, and these advancements are also documented within this report.

Some of the components integrated with the core marketplace were developed under the scope of
WP3 and WP4 (such as the Self Sovereign Identity (SSI) Agent Uself broker and Multi Party
Computation (MPC) node), these are described at a lower level of detail, with references made to their
associated deliverable documentation should the reader wish to seek further information. But they
have been included in this report because they are tightly integrated, and because they provide crucial
functions that are relied upon by the marketplace system.

For each component, a description is provided of its purpose, list of interfaces, deployment, source
code and which baseline technologies or tools have been used to build them.

1.2 Structure of the document

This document commences with an introduction and high-level overview of the final marketplace and
integrated partner components from WP3 and WP4 (Section 2). Dedicated sections for each of the
modules, programs and tools developed within KRAKEN and used within the final Marketplace release
then follow. These include the Marketplace Backend Application Programming Interface (API) (Section
3), Marketplace Catalogue Database (Section 4), Marketplace Frontend (Section 5), Marketplace Smart
Contract (Section 6), xDai watcher (Section 7), and the Data Unions Joining Server (Section 8)
developed by TEX.

A brief description of the Data Union Smart Contract (Section 9) and Streamr Network (Section 10) is
then also provided. These are external components developed outside of the KRAKEN project within
the Streamr Project and leveraged within the final KRAKEN marketplace. The former component is key
to allocating cryptocurrency payments between Data Union members, whilst the later provides a
decentralized means for transporting data streams in real-time between data providers and data
consumers. The Lynkeus Blockchain Node (Section 11) and Marketplace Mobile App (Section 12), both
developed by Lynkeus, are then described.

From here the document moves on to describe the external components integrated with the
marketplace and developed by partners under the scope of the other two KRAKEN pillars of SSI and
crypto tools. It describes the MPC node (Section 13) from XLAB, the SSI agent uSelf Broker (Section 14)
and KRAKEN Revocation & Endorsement Registry (Section 17) from Atos, the KRAKEN Company Depute
Tool (Section 15) and KRAKEN Company Identification Tool (KCIT) (Section 16) from Infocert, and finally
the Privacy Metrics Tool and API Tool (Section 18) developed by AIT.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 13

2 Marketplace Final Release Overview

This Section provides a brief overview description of the final KRAKEN marketplace release. It first
identifies the technology components integrated within the final marketplace release and then moves
on to provide:

• A short recap of the major developments provided within the first marketplace release (D5.5);

• An overview of the major developments added to this final release (D5.6);

• An overview of amendments / additions to the web-based marketplace user flows; and

• A diagram of the KRAKEN Marketplace Architecture realised in the final release.

Individual technological components are described in more detail within their respective Sections of
this report, and the full scope of functionalities within the KRAKEN marketplace were previously
described in D2.7 Design for Marketplace Reference Implementations [2].

2.1 Technology Components Used in the Final Marketplace Release

A full list of technological components that together are used in the final KRAKEN marketplace release
are listed below. The list also indicates which partners are hosting each individual component within
the platform. Responsibility for hosting a component does not mean that the specific partner was also
responsible for its development. Some of the components deployed within KRAKEN, which contribute
to the functioning of the marketplace platform, are deployed as a single instance, whilst others are
deployed as multiple instances hosted by multiple partners. Technological components deployed and
hosted by multiple partners include the Consortium Blockchain Nodes hosted by both Lynkeus and
TEX, the MPC Nodes hosted by three partners, XLAB, TEX and Atos.

• Hosted by TEX

o Marketplace Smart Contract

o Marketplace Backend API

o Marketplace xDai watcher

o Marketplace frontend

o Marketplace Catalogue Database

o Consortium Blockchain Node

o Data Unions Joining Server

o SSI Agent

o SSI Agent uSelf Broker

o MPC Node

o KRAKEN Revocation Registry

• Hosted by Lynkeus

o Consortium Blockchain Node

o Marketplace Mobile App

• Hosted by XLab

o MPC Node

• Hosted by Atos

o MPC Node

• Hosted by InfoCert

o KRAKEN Company Depute Tool

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 14

o KRAKEN Company Identification Tool

There are two additional third-party components that are integrated and leveraged by the KRAKEN
marketplace in the Data Unions use case. These are the Data Unions Smart Contract and the Streamr
Network. Both of these two components were developed outside of the KRAKEN project as part of the
Streamr Project.

The KRAKEN marketplace leverages a Data Union Smart Contract (Section 9), which is deployed on the
xDai blockchain. A Data Union is a type of Data Product which consists of multiple persons or entities
opting in via a third-party application (e.g. mobile app) to share and monetise their data in a Data
Product that is managed and administered by a Data Union Manager. The concept of Data Unions was
first described in D2.6 Marketplace Technical Specification [3] Section 2.4.2 and also in D2.7 Sections
2.2.2 and 5.1.2.1

The Marketplace Smart Contract (Section 6) redirects payments to the Data Union Smart Contract
which offers a revenue share of funds assigned to members of the Data Union that accumulate in the
Data Union contract.

Because the data types to be transacted in the Data Unions data exchange modality implemented
within the KRAKEN project are data streams, the marketplace also leverages the Streamr Network
(Section 10), a decentralized Peer-to-Peer pub-sub network that provides end-to-end encrypted data
transportation between data providers and data consumers.

The deployment and hosting of the integrated technology components described above are also
shown visually in Figure 1 below.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 15

Figure 1: Deployment and hosting of integrated technology components in KRAKEN marketplace

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 16

2.2 Major developments provided in first marketplace release

To recap, the major developments included within the first marketplace release were as follows:

• Workflow for a user that is not affiliated with an institution or company to register and login
to the KRAKEN marketplace.

• Integration with SSI for establishing and storing a users’ marketplace credentials in their SSI
wallet and presenting them to the marketplace in future logins.

• Workflow for a user to publish a batch Data Product for direct download by a data consumer,
including setting of consent preferences for data buyer access.

• Integration with MPC network to provide efficient and decentralized key distribution service
between data providers and data consumers in the batch data exchange modality mentioned
in the above bullet point.

• Ability for a user to connect a Metamask wallet to make and receive cryptocurrency payments
in the KRAKEN marketplace.

• Marketplace home page allowing users to browse Data Products published in the KRAKEN
marketplace.

• Workflow for a user to purchase access to batch Data Products in the KRAKEN marketplace.

• Restricted access to Data Products and automated “matching” of eligible users facilitated by
the integration of the marketplace with the Lynkeus Blockchain.

• Workflow to edit a previously published batch Data Product.

• A basic dashboard listing a data providers’ published batch Data Products in the KRAKEN
marketplace.

• A basic dashboard listing batch Data Products that a consumer has subscribed to in the KRAKEN
marketplace.

2.3 Major developments undertaken in final marketplace release

The following major development items have been added within this final marketplace release.

Institutional user registration and login

In addition to the registration and login of natural persons or data subjects, this final marketplace
release also supports the registration and login of natural persons that represent a company or
institution. This is enabled by the marketplace integration with the KRAKEN Company Identification
Tool (Section 16), along with the marketplace integration with the Ledger uSelf Broker of the SSI Agent
(Section 14) and present proof protocol, which allows a user to present a proof of a credential
demonstrating their institutional affiliation. The marketplace also checks if a user’s institutional or
company affiliation is still active or has been revoked by verifying Attorney (company / institutional)
Verifiable Credentials (VC) are still active in the Depute Tool (Section 15). The process for registering
in the marketplace as a user representing a company or institution is described in Section 3.4.3.1 of
D2.3 - Final KRAKEN Architecture [4], whilst the process for a user to obtain an Attorney VC is described
in Section 3.4.3 of D2.3.

Publication and purchase of privacy-preserving analytical results

The previous marketplace integration with the MPC Network has been extended to allow the
publication and purchase of what the KRAKEN team calls, “Analytics Data Products”. In addition to
publishing a Data Product for batch data download, a marketplace user can now publish a Data Product
that is only available for privacy-preserving analytics. In this use case, the data provider is assured of a
higher degree of privacy when sharing their data on the KRAKEN marketplace.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 17

The marketplace integration with the MPC network allows the evaluation of basic statistical functions
(analytics) on encrypted data without exposing the data itself to the computation nodes or the data
buyer, therefore preserving the privacy of the data producers and data sellers involved in the
computation. The process flow for how this data sharing modality works has been provided in Section
2.4.2 of D2.7.

Publication, purchase and joining of a Data Union

Through the integration of the Streamr Data Unions Framework and Streamr Network with the
KRAKEN marketplace, the KRAKEN team has developed a pilot Data Union demonstrator for the health
pilot. In this Data Union demonstrator, individual data subjects can opt-in to offer data from locally
stored health apps data in an aggregated Data Product on the KRAKEN marketplace called a Data
Union.

A Data Union is managed by a Data Union Operator or Manager. For the purposes of the KRAKEN
project’s health pilot demonstrator, Lynkeus has taken on the responsibility for this role. Data Union
operators have the power to add and remove members. They are responsible for maintaining their
Data Unions, including ensuring good data quality and removing members that are not contributing
data as they're expected to. Operators are incentivized to perform this work by the Admin fee
parameter, a fraction of the incoming Data Union revenue. Typically Operators are creators of both
the mobile app and Data Union.

The KRAKEN marketplace mobile application (see Section 12) developed by Lynkeus, provides
individual users with a simple way to opt-in to join the Data Union and publish their mobile health data
on a Data Union stream that is delivered to eligible buyers via the Streamr Network. Eligible buyers
purchase access to the Data Union data in the KRAKEN marketplace using cryptocurrency, and
revenues generated in cryptocurrency are shared between all members that have opted into the Data
Union, with a set percentage reserved for the Data Union Operator / Manager.

The following Figures show the flows for creating and publishing the pilot Data Union (Figure 2), joining
individual users/members to the Data Union (Figure 3), and purchasing a Data Union (Figure 4).

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 18

Figure 2: Process flow for creating and publishing the Data Union in the KRAKEN marketplace

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 19

Figure 3: Process flow for members joining the Data Union

Figure 4: Process flow for purchasing access to a Data Union in the KRAKEN marketplace

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 20

Computation of a data subject’s privacy metrics

The integration of AIT’s privacy metrics tool (Section 18) into the marketplace frontend allows an
individual data subject to measure their privacy prior to publishing a Data Product in the batch data
download sharing modality. After the data subject completes a questionnaire, the privacy metrics tool
provides them with a score indicating how well they are protected and the level of privacy they can
expect after publishing the Data Product.

Payment with fiat currencies

As described in Section 2.8.2 of D2.5, a demo of an invoicing payments flow has been included in the
marketplace for the batch data transfer modality only, and is available only to users representing a
company or institution in the marketplace. The demo workflow generates an invoice in Euros, a user
can then make a payment using traditional banking transfers outside of the KRAKEN marketplace
environment. Once an institutional data provider confirms they have received the payment in their
bank account, they can whitelist a buyer in the marketplace to give them access to the Data Product.

Release of KRAKEN marketplace mobile app

The KRAKEN marketplace mobile application has been integrated with the KRAKEN Marketplace
Backend to allow users to use their mobile device to quickly browse Data Products, change permissions
and availability of their own Data Products and see how well their Data Products are performing on
the market.

2.4 Updates to web-based marketplace user flows

In addition to the above major functionality additions, various updates have been made to the web-
based marketplace user workflows based on the feedback gathered from the final legal review of the
marketplace performed by KUL. This includes:

• Updates to the Data Product publication workflow for batch data, allowing a data provider
that publishes special categories of personal data, such as health data, to pre-approve and
provide explicit consent for which companies can access their data.

• Updates to the Data Product purchase workflow, to include the collection of additional
information from the data buyer regarding their use of the data such as the estimated
processing period, the factors that determine this period, and to which country and region the
data will be transferred.

• Inclusion of a dashboard page for the data provider, to view a list of data consumers currently
subscribed to their data and the relevant information about its use (as described in the
previous bullet point) and the data consumers contact details.

• Updates to the Data Product publication page to give a clearer split in the visible questions
depending upon if a user is a data subject or a natural person acting on behalf of a company
or institution. This provides greater clarity and transparency for the different types of users.

• Addition of the ability to delete Data Products from the marketplace catalogue and delete a
user’s account.

2.5 Final marketplace release architecture

After the integration of the major developments outlined in Sections 2.2 and 2.3, Figure 5 below shows
the full architecture of the marketplace for this final marketplace release, including the interfaces with
the other KRAKEN pillars. It also describes the major level interactions between each component.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 21

Figure 5: Full Marketplace architecture for KRAKEN Final Release

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 22

3 Marketplace Backend API

This Section describes the Marketplace Backend API component. This component is fully described in
D2.7 Section 4.1.1.1. It is used by the marketplace system to receive any type of client request related
to the publication of Data Products and the purchase of access to Data Products.

3.1 Description

The Marketplace Backend API is a Representational state transfer (REST) API that handles any request
sent by the Marketplace Frontend, the Marketplace xDai Watcher, the KRAKEN SSI app, the Ledger
uSelf Broker of the SSI Agent, and the KRAKEN Marketplace Mobile App. These requests enable a large
number of operations, with the major level operations identified below:

• Data Product catalogue download, browsing and filtering;

• Data Product publication and modification;

• Data Product publication on xDai;

• Data Product purchase;

• Buyer eligibility checks;

• Data Union member join requests;

• Buyer payment;

• Processing of MPC dataset key request;

• Processing of computation on analytics Data Products request; and

• Data Product browsing and Data Product permissions viewing and editing on KRAKEN
marketplace mobile app.

This component also sends requests to the MPC node, the Ledger uSelf Broker of the SSI Agent, the
KRAKEN Company Identification Tool, the revocation registry, the Marketplace Catalogue Database,
the Consortium Blockchain node, the Streamr Network and the Data Union Joining Server. These
requests enable a large number of operations, with the major level operations identified below:

• User registration and authentication for individual marketplace users and institutional users;

• Data Product metadata storage;

• User account data metadata storage;

• Data Product publication on the Consortium Blockchain;

• Buyer eligibility check,

• Dataset key shares storage;

• Permission for a Data Union member to publish on a stream;

• Grant buyer access to a Data Union stream.

3.2 Interfaces

A list of interfaces for the Marketplace API are provided below:

• GET/did-connection

Download did-connection invitation information to perform a Decentralized Identifier (DID)
connection with the marketplace SSI agent.

• GET/products

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 23

Download the list of public Data Products available on the marketplace.

• POST/products

Upload a new Data Product on the marketplace.

• GET/products/:id

Download metadata of a Data Product with a specific identifier (ID).

• PUT/products/:id

Modify metadata of a Data Product with a specific ID.

• GET/products/:id/streams

Get list of Data Streams of a Data Product with a specific ID.

• POST/products/:id/keyRequest

Request the key computation for a Data Product with a specific ID.

• POST/products/:id/deployFree

Publish a Data Product with a specific ID on the marketplace for free.

• POST/products/:id/setDeploying

Inform the marketplace that a Data Product with a specific ID is being published on the
payment blockchain.

• POST/products/:id/setDeployed

Inform the marketplace that a Data Product with a specific ID has been published on the
payment blockchain.

• POST/products/:id/stateEligibleBuyer

Request Consortium blockchain eligibility to purchase access to a Data Product with a specific
ID for the user sending the request.

• GET/subscriptions

Download list of subscriptions of the user sending the request.

• POST/subscriptions

Add a new subscription to a specific Data Product for the user sending the request.

• GET/products/:id/permissions/me

Download list of permissions of the user that is sending the request.

• GET /users/me

Download user profile information after login: name, surname and last login

• GET/users/me/products

Download list of data products owned by the user that is sending the request.

• GET/split.wasm

Download the web assembly code needed to perform the cryptographic operations for the
processing of encryption keys and analytics datasets on the user frontend.

• POST/suggestions

Download list of suggestions on a provided text for Data Products search functionality.

• POST /dataunion/:dataUnionAddress/joinrequest

Join request to Data union

• POST /signup

Signup request

• POST /ssi-webhook

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 24

Webhook interface for SSI agent broker

• POST /product/computation

Request computation for multiple analytics products

• GET /users/:id/productSeller

Get user information submitted at registration by user ID

• GET/reencryption.wasm.gz

Request wasm file needed for Batch data product key encryption

• POST /request-proof

Requesting proof of institutional affiliation during registration (if the user selects institutional
registration)

• POST /deleteProduct/:id

Deleting a Data Product from the marketplace catalogue

• POST /deleteUser

Deleting a user’s account and associated account information

3.3 Deployment

Figure 6: Automated code deployment

Automated code deployment tools are utilized in the deployment of the project code base. As new
versions of the component code are committed to a preconfigured deployment branch on GitHub they
are compiled on Travis CI and upon successful compilation they are deployed to a cloud infrastructure
hosted by Amazon Web Services.

The code compilation, deployment and cloud infrastructures environment settings are managed with
a specific configuration file appended to the code base. Capacity provisioning and health monitoring
of cloud infrastructure is handled by Amazon Web Services (AWS) Elastic Beanstalk services.

Travis.yml file guides Travis CI on how the code should be compiled and deployed, e.g., which
commands need to be executed and if there are any tests or code linting, how they should be run and
where should they be deployed given that previous stages of code compilation are successful.

The deployment includes an Elasticsearch instance provided by Elastic Cloud. The Elasticsearch
instance is synchronized with the database by a Moonstache instance deployed on AWS.

3.4 Source Code

The code is available on a private repository on GitHub at the following link:

https://github.com/technology-exploration/KRAKEN-backend

https://github.com/technology-exploration/KRAKEN-backend

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 25

3.5 Baseline Technology and Tools

The Marketplace API is a REST API developed using JavaScript. The libraries the code depends on are
express, fabric-network, ws for the web socket communication with the MPC network, mongoose for
the database communication and the Lynkeus libraries for the communication with the Consortium
Blockchain. For Data Products search functionality in the data catalogue, the Marketplace API relies on
Elasticsearch and Monstache. Elasticsearch is a tool that provides smart searching functionality and
Monstache is the tool used to keep Elasticsearch synchronised with the Marketplace Catalogue
Database.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 26

4 Marketplace Catalogue Database

This Section describes the Marketplace Catalogue Database. This component of the marketplace
system is the storage system described in D2.7 Section 4.1.1.1. It is used by the Marketplace API to
persistently store Data Products descriptions in the form of metadata associated with every Data
Product and the user’s account details.

4.1 Description

The Marketplace Catalogue Database is a MongoDB database instance that is used by the Marketplace
API to persistently store all information related to:

• A Data Product’s associated metadata;

• The information about registered users’ account and verifiable credentials; and

• A log of the DID connections established with the users.

The stored metadata serves the purpose of providing users with the ability to browse and filter Data
Products on the marketplace catalogue and describe and define specific details about the Data Product
when publishing data descriptions.

4.2 Interfaces

A list of Data Models is provided below:

DATA PRODUCT

• id: String

Hexadecimal string of 64 characters representing the product ID. This ID represents the same
data product on the xDai blockchain, on the backend and on the Lynkeus blockchain. It’s
generated for the first time on the Lynkeus blockchain.

• ownerID: String

Registration Verifiable Credential of the owner of the product

• name: string

User-provided product name

• description: string

User-provided product description

• shortDescription: string

User-provided product short description

• university: string

Data product university name

• studyProgram: string

Data product study program name

• course: string

Data product course name

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 27

• Tags: [String]

List of tags to categorise a data product belonging to the health pilot. These tags are selected
between the ones available in the Medical Subject Headings (MeSH) ontology. The
integration with the ontology is specified in D3.3

• fileStructureAndFormat

set of parameters describing the dataset

o filename: String

Name of the dataset file

o format: String

Format of the dataset file

o filesize: Number

Size of the dataset file

• owner: String

Data Product owner name/pseudonym

• imageUrl: String

Uniform Resource Locator (URL) of the Data product image

• state: String

Deployment state of the Data product. Available options: undeployed, deploying, deployed

• created: Date

Creation date of the Data product

• updated: Date

Latest update date of the Data product

• minimumSubscriptionInSeconds: Number

Minimum amount of seconds a subscription can be purchased or extended

• ownerAddress: Address

xDai address authorised to apply changes to the Data Product

• beneficiaryAddress: Address

Destination address for subscription tokens

• pricePerSecond: NumberString

Data Product price per second

• priceCurrency: ContractCurrency

User-selected Data Product price currency. Available options are DATA for crypto payments
and EUR for fiat payments

• timeUnit: TimeUnit

Data Product time unit chosen by the user between: hour, day, week, month

• category: String
Product category: Diploma, transcript, study status, course grade

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 28

• price: NumberString

Data Product price per time unit

• isFree: boolean

Data Product payment requirement binary indicator

• type: ProductType

Data Product type chosen by the user between: Batch, analytics and real time stream

• sector: string

Market sector of the Data Product chosen between health and education

• anonymizeDataset: boolean

Data product anonymisation binary indicator

• requiresWhitelist: boolean

Binary parameter indicating if a Data Product is provided with a whitelist

• policies

Access control parameters selected by the user
o marketing: Boolean,

Marketing as a purpose of use for published Data Product
o publicly_funded_research: Boolean,

Publicly funded research as a purpose of use for published Data Product
o private_research: Boolean,

Private research as a purpose of use for published Data Product
o managment: Boolean,

Management or improvement of business services as a purpose of use for published
Data Product

o automated: Boolean,
Automated decision-making, eg. artificial intelligence (including profiling) as a
purpose of use for a published Data Product

o categories: Boolean,
Select all buyer type categories as permitted to access Data Product

o publicHospitals: Boolean,
Public hospital can access Data Product

o privateHospitals: Boolean,
Private hospital can access Data Product

o privateResearch: Boolean,
Private Research Centres can access Data Product

o publicResearch: Boolean,
Public Research Centres can access Data Product

o other: Boolean,
Other non-profits can access Data Product

o governments: Boolean,
Government bodies can access Data Product

o privateCompanies: Boolean
Private companies (including consultancies, services, technology) can access Data
Product

• keyShares: [[Number]]

Shares of the dataset encryption key encrypted for every for the MPC nodes.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 29

• datasetUrl: string

URL for the download of the encrypted dataset

• streams

List of streams IDs

• purposes: Purposes

List of purposes specified by subjects other than the Data Product publisher for sharing their
data as stated in their consent.

• Boolean fields:

o marketing: Boolean,
Marketing as a purpose of use for published Data Product

o publicly_funded_research: Boolean,
Publicly funded research as a purpose of use for published Data Product

o private_research: Boolean,
Private research as a purpose of use for published Data Product

o managment: Boolean,
Managment or improvement of business services as a purpose of use for published
Data Product

o automated: Boolean,
Automated decision-making, eg. artificial inteligence (including profiling) as a
purpose of use for a published Data Product

o study_recommendations: Boolean,
Study recommendations as a purpose of use for published Data Product

o job_offers: Boolean,
Job offers as a purpose of use for published Data Product

o statistical_research: Boolean,
Statistical research as a purpose of use for published Data Product

• dataShareCountries

Which countries can access the Data Product (European Union (EU), Third countries, all
others)

• columnVariables

Column variable names of published Comma-Separated Values (CSV) file for the purpose of
an analytics Data Product

• numberOfRecords

Number of records in the CSV file published for the purpose of an analytics Data Product

• allowedCompanies

Allowed companies which can access a batch or Data Union Data Product

ACCESS ELIGIBILITY

• userID: String

Registration Verifiable Credential of the user requesting access to the Data Product.

• transactionID: String

ID of the blockchain transaction stating the eligibility of the user to buy the Data Product

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 30

• product: ProductSchema

Data product for which the user requested access to

• address

Wallet address of the Data Product consumer

SUBSCRIPTION

• userID: String

Registration Verifiable Credential of the user subscribing to the Data Product

• address: String

Address of the user which subscribed to product

• endsAt: Date

Expiry date of the subscription

• dateCreated: Date

Creation date of the subscription

• lastUpdated: Date

Latest extension (if any) of the subscription

• product: ProductSchema

Data Product which the user is subscribed to

USER ACCOUNT

• state: Number

Deployment state of the User’s verifiable credential

• registrationInfo

Verifiable credential content

o ID: String

Unique ID of the credential

o firstName: String

User’s first name

o givenName: String

User’s surname

o email: String

User’s email

o countryOfResidence: String

Country of residence

• didConnection
o state: Number
o id: String
o invitationID

• sharingRadioButton: String

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 31

Indicates if a user is acting in the marketplace on behalf of an organisation

• ageRadioButton: String

Indicates if a user is more than 18 years old

• contactName: String

Indicates if a user wants to be contacted privately by other users

• institution: String

Name of the institution or company a user works for

• typeOfInstitution: String

Type / category of institution or company a user works for

• legalSurname: String

Legal surname of the representative of the organization

• legalName: String

Legal name of the representative of the organization

• officerEmail: String

Data Protection Officer of the institution or company’s email address

• fiatPayment: String

Indicates if a user wants to receive payments in fiat currency for any Data Products they
publish in the marketplace

• invoicingName: String

Name of the institution or company to be included on an invoice for fiat payments

• invoicingAddress: String

Address of the institution or company to be included on an invoice for fiat payments

• invoicingZipCode: String

Zip or post code of the institution or company to be included on an invoice for fiat payments

• invoicingCountry: String

Country of the institution or company to be included on an invoice for fiat payments

• paymentInstructions: String

Any payment instructions such as bank account details to be included on an invoice for fiat
payments

• privacyConsent: String

User consent to KRAKEN privacy policy

• provider-consumerConsent: String

User consent to KRAKEN data provider – data consumer agreement

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 32

4.3 Deployment

The MongoDB instance exploited in the KRAKEN marketplace is a cluster deployed and provided by
MongoDB’s Atlas cloud clusters system.

4.4 Source Code

The code including schema definitions and the functions used to update them are included in the
Marketplace API repository.

4.5 Baseline Technologies and Tools

The database itself is a MongoDB instance. The library used to integrate the database with the
Marketplace API is mongoose.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 33

5 Marketplace Frontend

This Section describes the marketplace frontend. The marketplace frontend is fully described in D2.7
Section 4.1.1.2. This component of the marketplace system is used to interact with the KRAKEN
marketplace and perform all available operations as described in Section 5.1.

5.1 Description

The Marketplace Frontend is the software component within the marketplace system that is equipped
with a Graphical User Interface (GUI) to allow users of the marketplace to perform the following high-
level operations. A select number of Figures (Figures 7-18) are included of the marketplace GUI to help
the reader visualise these operations.

• Registration and login on the platform as either a data subject or as a natural person
representing a company or institution. If representing a company or institution, the user has
to present a proof of its institutional Verifiable Credentials to register on the marketplace
(Attorney VC), and a check is also performed that these credentials have not been revoked.

Figure 7: Marketplace registration form for data subjects or natural persons representing a company

• Data Product browsing in the marketplace data catalogue.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 34

Figure 8: Browsing the KRAKEN marketplace data catalogue

• Batch data publication and setting of preferences for data access, purchase, and download.

Figure 9: Publishing and setting preferences for access to batch Data Products

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 35

• When publishing a batch Data Product, as a data subject, a privacy metrics tool is offered to
determine the privacy level of the user. Figures showing the graphical interface of the privacy
metrics tool are provided in Section 18.

Figure 10: Option to check privacy rating prior to publishing a batch Data Product

• Analytics Data Product publication and setting of preferences for data access, purchase
through the Computation Basket, and download of the computation result as CSV file.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 36

Figure 11: Part of the analytics Data Product publishing workflow

Figure 12: Computation basket for purchasing analytics Data Products

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 37

• In the case of Analytics Data Products, the data is split in the frontend through the MPC
network once it is published. When purchased, the data is joined and downloaded by the data
buyer.

• Data Union Data Product publication including setting of preferences for data access, adding a
user’s stream (published on the Streamr Network) to the Data Product. Purchase of access to
Data Unions as a stream of data in real-time.

Figure 13: Part of the Data Union publication workflow, showing functionality to browse and add data
streams to the Data Product

• Delete a user’s published Data Product (Applicable to batch, analytics or Data Union Data
Products).

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 38

Figure 14: Option to delete a Data product in user’s dashboard

• Data buyers can browse their subscriptions in their own personal dashboard.

Figure 15: Personal Dashboard showing a buyer’s purchased Data Products

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 39

• Data sellers can view users subscribed to their published Data Products on their own personal
dashboard.

Figure 16: Dashboard page showing users subscribed to a data provider’s Data Products

• If the data seller is an institutional user, they can sell batch Data Products in fiat, and can also
give access to institutional data buyers to download the batch dataset once the payment is
received in their bank account.

Figure 17: A view of the invoice generated when a user opts to pay with fiat for batch Data Products only

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 40

• Delete a user’s marketplace account.

Figure 18: Option to delete a marketplace user’s account

It should be noted that the marketplace registration and login frontend GUI requires the user to also
interact with the Ledger uSelf Mobile App to enable the operations associated with the management
of a KRAKEN user’s identity. Including establishing a DID connection, the issuing and storage of VCs and
presenting a proof of an existing VC. These operations and their associated frontend GUI within the
uSelf Mobile App are described in Section 5 of D3.2 Self Sovereign Identity Solution Final Release [5].

The Marketplace Frontend is also integrated with a Metamask Wallet. The purpose of the Metamask
Wallet is to allow the marketplace user, depending on if they are acting as a data buyer or data seller,
to receive and make payments in cryptocurrency when Data Products are accessed within the KRAKEN
marketplace. Marketplace payments for batch and analytics Data Products are facilitated by a solidity
Marketplace Smart Contract published on the xDai blockchain. This component is described in Section
6 of this report. Marketplace payments for Data Unions Data Products are also facilitated by the
Marketplace Smart Contract, however payments are then directed towards the Data Union Smart
Contract, which is described in Section 9.

In facilitating the user operations described in the bullet point list above, the Marketplace Frontend
communicates with two components within the KRAKEN marketplace architecture, the Marketplace
API and the Marketplace Smart Contract for operations related to the publication, purchase and
browsing of Data Products.

Also integrated into the frontend codebase is the code for the Privacy Metrics Tool produced by AIT
and described in Section 18.

5.2 Interfaces

A list of interfaces for the Marketplace frontend are provided below:

• Marketplace home page

Browse Data Products that are listed based on the search criteria and the market sector.

• Sign In page

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 41

Sign in on the marketplace using the SSI wallet app.

• Signup page
Signup on the marketplace using the SSI wallet app.

• Connect wallet page
Connect the metamask wallet to the platform to perform payment and publication on the
marketplace smart contract.

• Data Product page
Show all metadata about a specific Data Product and the policies set by the Data Provider,
function to buy the data product and consume it.

• User products page
Browse user’s Data Products added to the platform.

• Edit product page
Edit a Data Product’s metadata, policies, price, publication.

• Subscriptions page

List user subscriptions.

• Data Streams page

Browse user’s Streams added to the platform.

• Data Union page
Browse user’s Data Union Products added to the platform.

• Manage Subscription’s page
List of the users that are subscribed to the published product. Only accessible to the data
owners.

• Invoices in fiat currency page
List of the users that chose fiat payments to purchase the product, access can be managed
once the payment is received. Only accessible to the data owners.

• New product page
Choose which type of product to publish.

• Privacy metrics page
For data subjects only, present questionnaire and compute privacy metric to determine the
susceptibility of a dataset to revealing private information.

• Computation basket page
for analytics products purchase. When purchase is confirmed, the data is computed and
downloaded.

• Invoice page
When confirming the purchase of a batch data product that is paid in fiat, the invoice page is
shown for the user to have the payment instructions and the invoice downloaded.

• Delete account

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 42

Confirm the deletion of a user's account

• Delete product
Confirm the deletion of a user's product

5.3 Deployment

The deployment of this component follows the same process as the one described for the Marketplace
API. Please refer to Section 3.3 for further details.

In addition to the configuration files specified in Section 3.3, this repository includes also an
.ebextensions file that manages the deployment environment specific settings and configurations, e.g.
number of file handlers on Linux operating system.

5.4 Source Code

The code is available on a private repository on GitHub at the following link:

https://github.com/technology-exploration/kraken-frontend

5.5 Baseline Technologies and Tools

The Marketplace frontend is a fork of the Streamr core-frontend repository publicly available on
GitHub:

https://github.com/streamr-dev/core-frontend

The software is written in JavaScript using the React framework. The relevant libraries already present
on the streamr-core-frontend repository and added for the purpose of KRAKEN are web3, Java Script-
Networking and Cryptography library (JS-NaCl) and the web assembly library to perform user
operations for MPC.

https://github.com/technology-exploration/kraken-frontend
https://github.com/streamr-dev/core-frontend

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 43

6 Marketplace Smart Contract

This Section describes the Marketplace Smart Contract. The Marketplace Smart Contract is described
in D2.7 Section 4.1.1.3. This component is used by the marketplace system to perform the publication
of a Data Product on the xDai blockchain. It also allows users of the marketplace that are eligible to
access a Data Product, based on the data provider’s predefined policies, to make payments with an
ERC-20 token to purchase access to a data set, computation results of an analytics package or the data
of a Data Union - which takes the form of a real time data stream.

6.1 Description

The Marketplace Smart Contract is the component responsible for the publication and purchase of
Data Products on the xDai blockchain. The Data Product publication and purchase requests sent to this
component come only from the Marketplace Frontend. This component is interfaced with the
DataCoin ERC-20 smart contract deployed on xDai, allowing users of the marketplace to exploit
Streamr’s DataCoin token for monetary transactions between data providers and data consumers
within the marketplace.

6.2 Interfaces

A list of interfaces is provided below:

• getProduct(bytes32 id)
Fetch the info of a product with a specific id.

• createProduct(bytes32 id, string memory name, address beneficiary, uint pricePerSecond,
Currency currency, uint minimumSubscriptionSeconds)
Creates a new product on the smart contract specifying all the parameters.

• createProductWithWhitelist(bytes32 id, string memory name, address beneficiary, uint
pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)
Creates a new product on the smart contract specifying all the parameters and enables it to
be whitelisted.

• deleteProduct(bytes32 productId)
Undeploys a product with a specific id.

• redeployProduct(bytes32 productId)
Deploys an existing undeployed product with a specific id.

• updateProduct(bytes32 productId, string memory name, address beneficiary, uint
pricePerSecond, Currency currency, uint minimumSubscriptionSeconds, bool redeploy)
Updates the product info.

• offerProductOwnership(bytes32 productId, address newOwnerCandidate)
Offers the product ownership to another address.

• claimProductOwnership(bytes32 productId)
Claims the product ownership if the ownership was previously offered by the previous owner.

• setRequiresWhitelist(bytes32 productId, bool _requiresWhitelist)
Sets up a product to require whitelisting or not.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 44

• whitelistApprove(bytes32 productId, address subscriber)
Approve an address to be able to purchase a product.

• whitelistReject(bytes32 productId, address subscriber)
Prevent an address to be able to purchase a product.

• whitelistRequest(bytes32 productId)
Request to be whitelisted for a product with specific id.

• getWhitelistState(bytes32 productId, address subscriber)
Fetch the state of the whitelist on a certain address.

• getSubscription(bytes32 productId, address subscriber)
Fetch the subscription info of an address and a product.

• getSubscriptionTo(bytes32 productId)
Fetch the subscription info of the transaction sender address and a product.

• hasValidSubscription(bytes32 productId, address subscriber)
Checks if the specified address has a valid subscription on the specified product.

• grantSubscription(bytes32 productId, uint subscriptionSeconds, address recipient)
Give free access to a data product to a specific address. This function can only be called by the
product owner.

• buyFor(bytes32 productId, uint subscriptionSeconds, address recipient)
Buy the product for a specific address.

• buy(bytes32 productId, uint subscriptionSeconds)
Buy the product for the transaction sender address.

• updateExchangeRates(uint timestamp, uint dataUsd)
Update the exchange rates of the token associated with the smart contract.

• getPriceInData(uint subscriptionSeconds, uint price, Currency unit)
Get the current price of a product in the form of the token associated with the smart contract.

• halt()
Prevent the execution of any function that could provoke modification to the internal state of
the smart contract. This function can only be called by the smart contract owner.

• resume()
Revert the actions of “halt()”

• reInitialize(address datacoinAddress, address currencyUpdateAgentAddress, address
prev_marketplace_address)
Override the current addresses of the token associated with the smart contract, the currency
updater address and the previous marketplace address (if it exists).

• setTxFee(uint256 newTxFee)

Sets a transactions fee that is sent to the smart contract owner on every paid purchase on the
smart contract.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 45

• buyAnalyticsPackage(bytes32[] memory productIDs)
Buy an analytics package of products for the transaction sender address. The list of products
is provided in the arguments of the function.

• getPackageByNumOfProducts(uint numOfProducts)
Fetch the type of package that the marketplace adopts depending on the number of
products.

• getPackage(string memory id)
Fetch the type of package by providing the package id.

• createPackage(string memory id, uint price, uint paymentToEach, uint8 minProducts, uint8
maxProducts)
Create a new package specifying all the parameters.

• updatePackage(string memory id, uint price, uint paymentToEach, uint8 minProducts, uint8
maxProducts)
Updates an existing package specifying all the parameters.

• deletePackage(string memory id)
Deletes an existing package selecting it using the id.

• packageExists(string memory id)
Checks if the package corresponding to the provided id exists.

• getPackageIDs()
Fetches the list of ids of all the packages.

A list of events is provided below:

• ProductCreated(address indexed owner, bytes32 indexed id, string name, address beneficiary,
uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)
Notifies about the creation of a new product.

• ProductUpdated(address indexed owner, bytes32 indexed id, string name, address
beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)
Notifies about the update of a product providing all the info.

• ProductDeleted(address indexed owner, bytes32 indexed id, string name, address beneficiary,
uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)
Notifies about the deletion of a product providing all the info.

• ProductImported(address indexed owner, bytes32 indexed id, string name, address
beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)
In the eventuality of the presence of a version 1 smart contract, it notifies about the import of
a product providing all the info.

• ProductRedeployed(address indexed owner, bytes32 indexed id, string name, address
beneficiary, uint pricePerSecond, Currency currency, uint minimumSubscriptionSeconds)
Notifies about the redeployment of a product providing all the info.

• ProductOwnershipOffered(address indexed owner, bytes32 indexed id, address indexed to)

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 46

Notifies about the product’s ownership offer to a new owner providing the info about current
owner, product id and potential new owner.

• ProductOwnershipChanged(address indexed newOwner, bytes32 indexed id, address indexed
oldOwner)
Notifies about the product’s ownership change to a new owner providing the info about new
owner, product id and old owner.

• Subscribed (bytes32 indexed productId, address indexed subscriber, uint endTimestamp)
Notifies about a new subscription or an extension of an existing subscription providing the
product id, the subscriber address and the end of the subscription.

• NewSubscription(bytes32 indexed productId, address indexed subscriber, uint endTimestamp)
Notifies about a new subscription.

• SubscriptionExtended(bytes32 indexed productId, address indexed subscriber, uint
endTimestamp)
Notifies about the extension of an existing, not expired subscription.

• SubscriptionImported(bytes32 indexed productId, address indexed subscriber, uint
endTimestamp)
In the eventuality of the presence of a version 1 smart contract, it notifies about the import of
a subscription providing all the info.

• ExchangeRatesUpdated(uint timestamp, uint dataInUsd)
Notifies about the change of the exchange rates used by the smart contract to convert DATA
COIN in dollars or euros and viceversa.

• WhitelistRequested(bytes32 indexed productId, address indexed subscriber)
Notifies about the request of being whitelisted to purchase a product.

• WhitelistApproved(bytes32 indexed productId, address indexed subscriber)
Notifies about the approval of whitelisting request

• WhitelistRejected(bytes32 indexed productId, address indexed subscriber)
Notifies about the rejection of whitelisting request

• WhitelistEnabled(bytes32 indexed productId)
Notifies about the enabling of the whitelisting functionality on a product.

• WhitelistDisabled(bytes32 indexed productId)
Notifies about the disabling of the whitelisting functionality on a product.

• TxFeeChanged(uint256 indexed newTxFee)
Notifies about the change of the marketplace’s owner transactions fee.

• BoughtAnalyticsPackage(address indexed buyer, string packageID, bytes32[] productIDs)
Notifies about the purchase of a set of Analytics products using a package.

6.3 Deployment

The deployment of the Marketplace Smart Contract is performed on the xDai blockchain. Currently the
Smart Contract is deployed and has the following address:

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 47

0x4B36680C67EFa16AED5a693726c20dB59428859C

The deployment has been performed using the Truffle library migration functionality. The smart
contract can be also monitored on blockscout at the following address:

https://blockscout.com/xdai/mainnet/address/0x4B36680C67EFa16AED5a693726c20dB59428859C/
transactions

6.4 Source Code

The source code is available on a private repository on GitHub at the following link:

https://github.com/technology-exploration/kraken-marketplace-contracts

6.5 Baseline Technologies and Tools

The Marketplace Smart Contract is a fork of the Streamr-marketplace-contracts repository publicly
available on GitHub:

https://github.com/streamr-dev/marketplace-contracts

The modifications performed for KRAKEN include the setup of the deployment of the Marketplace
Smart Contract to occur on the xDai blockchain instead of Ethereum and other modifications related
to the Smart Contract that have contributed also to the Streamr-marketplace-contracts repository.
Specifically, the above-mentioned modifications have been applied to make the smart contract
independent from an already deployed version 1 of the Streamr marketplace smart contract. The
modifications are publicly visible at the following link:

https://github.com/streamr-dev/marketplace-contracts/pull/44/

The software is written in Solidity using the React framework. The relevant libraries already present
on the Streamr marketplace contracts repository are Openzeppelin, Truffle, web3, mocha.

https://blockscout.com/xdai/mainnet/address/0x4B36680C67EFa16AED5a693726c20dB59428859C/transactions
https://blockscout.com/xdai/mainnet/address/0x4B36680C67EFa16AED5a693726c20dB59428859C/transactions
https://github.com/technology-exploration/kraken-marketplace-contracts
https://github.com/streamr-dev/marketplace-contracts
https://github.com/streamr-dev/marketplace-contracts/pull/44/

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 48

7 Marketplace xDai Watcher

This Section describes the Marketplace xDai Watcher, this component is used by the Marketplace API
to get updates on events happening on the Marketplace Smart Contract and perform consequent
actions.

7.1 Description

The Marketplace xDai Watcher is an intermediary between the Marketplace Smart Contract and the
Marketplace API. Its role is to update the Marketplace API about any new events registered on the
Marketplace Smart Contract, including Data Product publication, modification, deployment,
subscription and deletion.

7.2 Interfaces

The Marketplace xDai Watcher does not offer any interface. However, it subscribes to the following
list of events on the Marketplace Smart Contract:

• ProductCreated

• ProductRedeployed

• ProductDeleted

• ProductUpdated

• ProductOwnershipChanged

• Subscribed

When any of these events are triggered, the Marketplace xDai Watcher updates the Marketplace API
on the following interfaces:

• POST/products/:id/setDeployed

• POST/products/:id/setUndeployed

• POST/products/:id/setPricing

• POST/subscriptions

7.3 Deployment

The deployment of this component follows the same process as the one described for the Marketplace
API. Please refer to Section 3.3 for further details.

7.4 Source Code

The source code for the Marketplace xDai Watcher is available on a private repository on GitHub at
the following link:

https://github.com/technology-exploration/kraken-ethereum-watcher

7.5 Baseline Technologies and Tools

The Marketplace xDai Watcher is a fork of the streamr-marketplace-contracts repository, which is
publicly available on GitHub:

https://github.com/streamr-dev/streamr-ethereum-watcher

https://github.com/technology-exploration/kraken-ethereum-watcher
https://github.com/streamr-dev/streamr-ethereum-watcher

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 49

The modifications performed for KRAKEN include the setup of the Watcher to listen to a Marketplace
Smart Contract deployed on the xDai blockchain and to send updates on the Marketplace API
endpoints.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 50

8 Data Union Joining Server

This Section describes the Data Union Joining Server, this component is used by the Marketplace
Backend API, which redirects requests from new Data Union members to join the Data Union to the
Joining Server. The Data Union Joining Server adds members’ wallet addresses to the Data Union Smart
Contract so that revenues in cryptocurrency can be tracked and withdrawn by Data Union members.

8.1 Description

Data Union Joining server is a software application that provides an interface between Hypertext
Transfer Protocol (HTTP) REST and Ethereum Blockchain. This component creates a bridge from HTTP
REST to Ethereum Blockchain.

8.1.1 Development

Current Node version is defined in file .nvmrc in the project root directory. To use the defined Node
version, execute nvm use in the project directory. Common development recipes can be found from
the Makefile in the project root. For example:

• make npm-ci

• make test

• make run

8.2 Interfaces

Interfaces for the Data Union Joining Server are provided below:

• HTTP POST to join Data Union.

Body of the request is in JavaScript Object Notation (JSON) format and contains field member. Path of
the request contains: dataUnionAddress. Both member and: dataUnionAddress are Ethereum
addresses. When called with valid parameters this endpoint will join the member to the given Data
Union.

8.3 Deployment

The application is deployed to Amazon’s AWS EC2 environment. Server’s IP address is 3.68.33.228 and
the server runs on port 8080/tcp.

The application is deployed at path /home/dataunion/data-union-joining-server. The application state
can be controlled with systemd utilities. See /etc/systemd/system/data-union-server.service for
details.

8.4 Source Code

Source code is written in the Node programming language. Source code is stored under version control
at GitHub

https://github.com/technology-exploration/data-union-joining-server

https://github.com/technology-exploration/data-union-joining-server

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 51

8.5 Baseline Technologies and Tools

Source code repository contains Node 16.15 source code. Makefile for running significant
development tasks for the project.

Significant dependencies for data union server are listed below:

• Express 5.x for HTTP server

• Commander.js for parsing command line arguments

• Ethers API 5.x for interacting with blockchain

• Pino API 7.x for logging

Unit testing and development time dependencies are below:

• Mocha for unit testing

• Chai for unit test assertions

• Supertest for testing Express HTTP handler functions

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 52

9 Data Union Smart Contract

This Section describes the Data Union Smart Contract. The Data Union Smart Contract template was
developed as part of the Streamr Project and is leveraged by the KRAKEN marketplace system. The
component is used to perform the deployment of a Data Union Data Product and facilitate payment
for access to the Data Product, including the allocation of shares of payments to members of the Data
Union.

9.1 Description

The KRAKEN marketplace has integrated with Streamr’s Data Union framework [6], a data
crowdsourcing and “crowdselling” solution developed by the Streamr Project. The framework powers
applications that enable people to join their valuable data together in a single Data Product and earn
by sharing it with interested data consumers.

Data Unions are listed on the KRAKEN marketplace by a Data Union Admin as a type of Data Product
for sale. Data producers join and opt-in to share their data to the Data Union using an application. In
the case of the KRAKEN health pilot, data producers use the KRAKEN Marketplace Mobile App (Section
12) to opt-in to share data from the health apps on their mobile device. When a buyer purchases access
to the Data Product, the revenue in cryptocurrency is automatically distributed to all of the data
producers, and the buyer receives access to the aggregated real-time stream of data over the Streamr
Network (Section 10).

Data Union Smart Contracts are deployed for individual Data Union Data Products. In other words,
each time an individual Data Union Data Product is published, a Data Union Smart Contract is also
deployed for that specific Data Union.

The Data Union Smart Contract keeps track of all of the individual Ethereum addresses of the members
who have joined the Data Union. It facilitates one-to-many payments for the Data Union each time a
single buyer purchases time based-access to a data stream.

The Marketplace Backend API can receive requests for new members to join the Data Union from the
Marketplace Mobile App and redirect these along with the Ethereum addresses to the Data Unions
Joining Server (Section 8), which allows new members and their addresses to be added to the Data
Union Smart Contract.

9.2 Interfaces

The interface for this component is a smart contract on the Ethereum blockchain. Smart Contracts that
create an individual Smart Contract for a specific Data Union are:

• DataUnionFactory:
https://blockscout.com/xdai/mainnet/address/0x82F1b8a9521933ecC41A9062f1eb597D0Ad
6e12F

• DataUnionTemplate:
https://blockscout.com/xdai/mainnet/address/0xA7E64C07464DdC69dC1534C14c7c724E58
07d42a

9.3 Deployment

Data Unions are fully on-chain, on the xDai blockchain, with a conduit to the Ethereum mainnet. In
future it will be possible to run them on any Ethereum-compatible sidechain, however at the moment
xDai is the only supported sidechain. The KRAKEN Data Union Smart Contract has been deployed on
the xDai blockchain using the Streamr Core app[7]. Streamr Core is a user interface created by the

https://blockscout.com/xdai/mainnet/address/0x82F1b8a9521933ecC41A9062f1eb597D0Ad6e12F
https://blockscout.com/xdai/mainnet/address/0x82F1b8a9521933ecC41A9062f1eb597D0Ad6e12F
https://blockscout.com/xdai/mainnet/address/0xA7E64C07464DdC69dC1534C14c7c724E5807d42a
https://blockscout.com/xdai/mainnet/address/0xA7E64C07464DdC69dC1534C14c7c724E5807d42a

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 53

Streamr Project allowing easy deployment and customising of the parameters of the Data Union Smart
Contract, such as the price of the data and the revenue share percentage between its members.

The process for deploying a Data Union Smart Contract is described in full here:

https://blog.streamr.network/how-to-start-a-data-union/ .

9.4 Source Code

The underlying Streamr Data Union smart contracts are open source. The source code can be found in
the Streamr GitHub repository: https://github.com/streamr-dev/data-union.

9.5 Baseline Technologies and Tools

See above for the underlying source code of the Streamr Data Union smart contracts. The smart
contract was deployed using the Streamr Core app at the following URL:

https://streamr.network/core

Once in Core go to Products > Create > Data Union

https://blog.streamr.network/how-to-start-a-data-union/
https://github.com/streamr-dev/data-union
https://streamr.network/core

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 54

10 Streamr Network Integration

This Section describes the Streamr Network[8]. The Streamr Network was developed as part of the
Streamr Project and was not developed within the KRAKEN project. An integration has been developed
between the KRAKEN marketplace and the Streamr Network in order for it to be leveraged in the Data
Unions use case of the health pilot, where the decentralized network will be used to transfer data
streams produced by the Apple HealthKit Data Union from publishers to subscribers (data buyers).

10.1 Description

The Streamr Network is a peer-to-peer network for publishing and subscribing to data in real-time. The
KRAKEN marketplace uses the Streamr Network for decentralized data transport for the stream
produced by the Apple HealthKit Data Union Data Product in the health pilot.

The Network consists of nodes that interconnect peer-to-peer using the Streamr protocol [9].
Together, the nodes in the Network deliver published streams of messages to all data buyers that
subscribe to the Data Union Data Product within the KRAKEN marketplace. The Data Union Operator
or Manager uses the Marketplace Frontend to connect the stream produced by the Marketplace
Mobile App, and being published on the Streamr Network, to the Data Union Data Product.

The KRAKEN Marketplace Backend API has been integrated with the Streamr Network to grant time-
based access to data streams for eligible buyers. Buyer eligibility is determined based on the defined
preferences set by the data provider at the time of data publication about who can access and for what
purpose. The integration between the Marketplace Backend API and the Lynkeus Consortium
Blockchain enables this process of granting access to eligible buyers. For further information on how
the Lynkeus Consortium Blockchain determines the eligibility of a data buyer refer to D5.3 Initial
KRAKEN marketplace integrated architecture document.

10.2 Interfaces

Applications, like the Marketplace Mobile App in the case of the KRAKEN project, publish and subscribe
to streams via Streamr nodes. Nodes act as the access points to the Streamr Network. To connect an
application to streams it is interfaced with a Streamr node.

Applications can be interfaced with Streamr nodes based on two possible approaches:

• Light nodes: the node is imported to an application as a library and runs locally as part of the
application

• Broker nodes: the node runs separately, and the application connects to it remotely using one
of the supported protocols

The interfaces for the Streamr Network are described in more detail here:

https://streamr.network/docs/streamr-network/intro-to-streamr-network

How to use a Streamr Light node in an application is described here:

https://streamr.network/docs/streamr-network/using-a-light-node

How to connect an application to a Streamr Broker node is described here:

https://streamr.network/docs/streamr-network/connecting-applications

10.3 Deployment

How to deploy and run your own Streamr Broker node is described here:

https://streamr.network/docs/streamr-network/installing-broker-node

https://streamr.network/docs/streamr-network/intro-to-streamr-network
https://streamr.network/docs/streamr-network/using-a-light-node
https://streamr.network/docs/streamr-network/connecting-applications
https://streamr.network/docs/streamr-network/installing-broker-node

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 55

10.4 Source Code

The source code for the Stream Network can be found here:

https://github.com/streamr-dev/network-monorepo

10.5 Baseline Technologies and Tools

As already indicated in this Section the Streamr Network is an external component not developed
within the KRAKEN project, but integrated into the KRAKEN marketplace in order to pilot the Apple
HealthKit Data Union in the health pilot.

https://github.com/streamr-dev/network-monorepo

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 56

11 Consortium Blockchain Node

This Section describes the Consortium Blockchain Network, a set of organization’s hosting nodes that

run the smart contracts which handle the marketplace catalogue, user related data and data access

control policies.

11.1 Description

The Consortium Blockchain Network (built on Hyperledger Fabric) consists of two Organizations:
Lynkeus and TEX. Each organization hosts two peer Nodes. Additionally, there is a third logical
Organization handling the Ordering Service which is called Orderer Organization and is under the
management of Lynkeus and TEX.

The Peer Organizations are joined in a channel in which a Chaincode (Package containing Smart
Contracts) is deployed. This Chaincode handles the user preferences and other related data regarding
the marketplace, data catalogue operations, as well as enforcing access control policies on the data
between a buyer and seller creating agreements.

Marketplace users interact with the Blockchain Network in the following ways:

• They register/enroll to an Organization’s Certificate Authority to obtain crypto material
(certificate) that allows them to perform chaincode operations.

• They can call chaincode functions via the marketplace UI such as creating the account, creating
a product or buying data.

For more information on the Blockchain Network and Hyperledger Fabric refer to Deliverable 5.3.

11.2 Interfaces

Application (Node JS) API

CA Services

• registerAppUser. Register a user on the selected Certificate Authority (CA)

• enrollAppUser. The user enrolls using a Certificate Signing Request and obtains a signed
certificate.

• updateUser. Update user data on the CA

• deleteUser. Delete a user from the CA

• isAdmin. Check if a certificate belongs to an admin

• reenrollAppUser. Reenroll a user to obtain a new certificate

• getExpirationDate. Get the max expiration date among all the certificates of a user

Cache Queries

• queryUsers. Query all users

• queryUser. Query user by username

• queryProducts. Query all products

• queryProduct. Query product by id

• queryCatalogue. Query the available products (All products with non-expired certificates)

• queryFilteredProducts. Query and filter the catalogue to match the browsing user’s
preferences

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 57

Block Listening

• createBlockListener. Create a listener that fetches each newly appended block

• removeBlockListener. Remove a listener

• handleTransactionData. Extract all the Events and EventData from the fetched blocks and
forward them to the database

Util

• connectGateway. Connect to the Fabric Blockchain Network (all nodes) using a connection
profile.

Signing Offline

• sendTransaction. Sign a transaction manually on the user side and send it to the network.

Documentation is generated using jsdoc and will be published at a later stage.

Chaincode API

User Credentials

• CreateUser. Create a user account on the ledger

• UpdateUser. Update a user account

• ReadUser. Read user data

• DeleteUser. Delete a user account

Data Catalogue

• CreateProduct. Create a product

• UpdateProduct. Update a product

• ReadProduct. Read product data

• DeleteProduct. Delete a product

• BuyProduct. Calls Agreements Contract to validate the eligibility of the buyer to access this
product

Agreements

• NewAgreement: Store a new agreement if the validation is successful and the transaction
status

• UpdateAgreement: Update an agreement’s status

Documentation is generated using godoc and will be published at a later stage.

Installation APIs (CLI)

Regarding the setting up of the network and the organizations, we have created APIs that simplify the
most essential processes of a peer and a CA client. These APIs can be used by a network operator to
set up an organization, join a peer to channel, install chaincodes, manage the CAs, and so on.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 58

CA Client API Tasks

Register user to Transport
Layer Security (TLS) CA / CA

Enroll user

Re-Enroll user

View list of Identities in CA

Setup and launch CA Server

Setup Organization
Managed Service Provider
(MSP)

Table 1: CA Client API Tasks

Peer API Tasks

Creates a channel transaction from profile config Install chaincode to peer

Submit channel transaction to orderer Query installed chaincodes on peer

Joins a peer to channel Approve chaincode as Org

Create and submit anchor peer update transaction Query approved chaincodes on channel

List channels a peer has joined Check commit readiness of chaincode

Package a chaincode Commit chaincode definition to channel

Query committed chaincodes on channel Fetch configuration of channel

Create an update transaction to add an
organization

Sign configuration transaction as
organization

Start a node, peer/orderer

Table 2: Peer API Tasks

11.3 Deployment

Each of the components mentioned above represents a different physical or virtual node. In our

implementation, each node is deployed as a docker container inside a Virtual Machine (VM) hosted in

cloud services. The TLS CA is only used for the enrolment of nodes, so after the initial enrolment, it will

be down if another node will not be joined to the network. Thus, we have used one VM for both CAs

for better resource management.

The individual network nodes are depicted in the following Figure.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 59

Figure 19: Individual network nodes

The deployment of the network is a collaborative effort between the organizations and requires

several steps to be fully set up. The steps are well defined in a file called “DEPLOY.md” in the repository.

11.4 Source Code

The Hyperledger Fabric network code is currently stored on a private repository of the developer and

is shared with members of other teams.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 60

11.5 Baseline Technologies and Tools

11.5.1 Private Network

Hyperledger is the framework leveraged in Kraken building on the My Health My Data (MHMD) work

on this front, expanded for the specific requirements at hand. Specifically, the Fabric instance can

achieve two times more transactions per second (TPS) with an appealing implementation and code

structure from a development standpoint.

11.5.1 Cache Database

This database is a MongoDB instance.

11.5.1 Smart Contracts

HLF smart contracts are written in GO, which is strict in terms of syntax and logic and is thus of great

use when writing smart contracts. These contain data access parameters that are computed by the

filtering algorithm running on the Blockchain to compute data access permissions.

11.5.1 Application

The backend application is written in Node.js and is built mainly using Hyperledger Fabric’s Node SDK

which utilizes functionalities to provide connection and interaction with the blockchain network. The

application is the middleware between the network and the user and has been optimized to achieve

high throughput, security, and privacy.

11.5.1 Documentation

The smart contracts code is documented using godoc and its standard code documentation practices.

In respect of the Node.js application, we used the tool JSDoc.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 61

12 Marketplace Mobile App

This Section describes the KRAKEN Marketplace Mobile Application, a mobile version of the KRAKEN

marketplace providing certain limited functionalities for marketplace users.

12.1 Description

The KRAKEN Marketplace Mobile Application connects the marketplace to its mobile environment to
allow users to quickly browse Data Products, change permissions and availability of their own Data
Products and see how well their Data Products are performing on the market. In order for the user to
connect to the marketplace application the user first needs to scan a Quick Response (QR) code to
retrieve a token which will authenticate him/her. Such a QR code is made available to the user after
logging in to the browser marketplace application. This enables retrieving information from the
marketplace. At that point the user is able to login using his/her credentials (Figure 20).

Figure 20: User login to the KRAKEN Marketplace Mobile Application

Data Products can be searched using the same type of semantic search implemented in the web-based
version of the KRAKEN data catalogue (Figure 21).

Figure 21: Data Products search in the KRAKEN Marketplace Mobile Application

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 62

Active subscriptions to Data Products can be viewed in the app too (Figure 22)

Figure 22: View of active subscriptions to Data Products in the Marketplace Mobile Application

Finally, the marketplace application supports offline signing of requests to enable the editing of entries
on the blockchain e.g. to change permissions or availability. That is, requests are directly signed on the
application and are then sent to the backend. In this way, the expectedly frequent usage of the app,
i.e. the management of data access parameters by sellers of personal data, is fully supported even
directly on the app, with no additional authentication required.

The application has been in an active state of development and will be finished and tested during the
month of July 2022, in preparation for the pilot test in September 2022.

12.2 Interfaces

Once the user is connected to the app, information is made available to the user through the backend
RESTful API and http/https calls.

12.3 Deployment

The KRAKEN Marketplace Mobile app will be downloadable from an Android Package Kit (APK) link.

12.4 Baseline Technologies and Tools

The software is written in React native https://reactnative.dev/.

https://reactnative.dev/

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 63

13 MPC Node

This Section describes the MPC nodes component. This component is used by the KRAKEN platform as
a mechanism for key distribution and to perform secure computation / analytics on published datasets.
We briefly summarize the component here, however for further details please refer to Deliverable 4.4
Final implementation of cryptographic libraries [10], where the component has been extensively
documented.

13.1 Description

Secure Multi-Party Computation allows users to evaluate various programs including analytics on
encrypted data, without revealing the data itself. This is achieved by splitting the queries among MPC
nodes that can jointly and securely perform the desired computation. The privacy of the dataset is
guaranteed by the decentralization.

The KRAKEN platform uses MPC as a mechanism for the key distribution and to evaluate various
analytics on the datasets, see D2.4 and D2.5 for further details on MPC architecture and protocols and
D5.3 Initial KRAKEN Marketplace Integrated Architecture [11] for a detailed explanation of the two
applications of MPC.

13.2 Interfaces

An MPC node is a service interfacing in the following way:

• Accepts requests from the Marketplace Backend API (Section 3) component.

• Returns results of the computations to Marketplace Backend API (Section 3) component.

• Communicates with other MPC nodes to securely evaluate functions.

All the above communication is done through sockets. See D4.4 for a detailed explanation of the
structure of the requests and responses. However please note that while the MPC nodes directly
communicate only with the Marketplace Backend API (Section 3), this component serves only as a
connector between data sellers, data buyers and the MPC nodes in the KRAKEN platform. No data can
be revealed to the Marketplace API (Section 3).

13.3 Deployment

MPC nodes can be deployed as Docker containers with specified addresses of the other MPC nodes. In
the current release 3 nodes are deployed on the XLAB servers, while in the following releases the nodes
will be distributed among the partners: as agreed these are XLAB, ATOS and TEX.

13.4 Source Code

All of the source code is available to all the partners in the KRAKEN consortium together with all the
other cryptographic tools in a private repository at
https://github.com/krakenh2020/KrakenCryptoTools. We plan to make this repository public in the
future.

13.5 Baseline Technologies and Tools

The MPC node component is implemented in Go programming language managing the communication
and scheduling of tasks. It uses a fork of SCALE-MAMBA https://github.com/KULeuven-COSIC/SCALE-
MAMBA, for building and evaluating secure multi-party computations. It uses a homomorphic proxy

https://github.com/krakenh2020/KrakenCryptoTools
https://github.com/KULeuven-COSIC/SCALE-MAMBA
https://github.com/KULeuven-COSIC/SCALE-MAMBA

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 64

encryption protocol for decentralized key management, please see D2.5 KRAKEN Final Technical
Design [12] and D5.3 for further information.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 65

14 Marketplace SSI Agent uSelf Broker

The SSI Agent deployed by KRAKEN in the marketplace is called Ledger uSelf Broker, being an
enterprise-level solution implemented to support the interaction between the user and marketplace
and enable communication flow in the processes between them. It is one of the core components of
the SSI approach integrated in the architecture of KRAKEN

14.1 Description

This component will be located between the Marketplace services and the SSI Server Agent provided
by the Hyperledger Aries protocol implementation used in the SSI approach.

It means, this Broker will facilitate the interactions between the different services and processes
performed in the marketplace and the consumers of these services using their mobile KRAKEN SSI
application.

For this purposes, three processes are implemented in this component:

• Exchange DIDs, this protocol is used to create a connection between the service provider
(marketplace) and the user based on DID.

• Issue credential, to enable the issuance of a Verifiable Credentials

• Proof presentation, to initiate the request of the proof.

More information related to the mentioned SSI Server Agent and the other SSI components, i.e., the
SSI Mediator Agent or SSI Mobile Agent can be found in the deliverable D3.2 Self-Sovereign Identity
Solution Final Release, where it is explained that those agents will use the underlying framework of
Hyperledger Aries.

14.2 Interfaces

The following interfaces are available entry points of the Ledger uSelf Broker, having several for the
usage and some for configuring and managing the server.

The following are dedicated for the usage:

• POST/connections/generate-invitation

For generating an invitation to be translated into a QR code

• POST/issue-credential/issue

For issuing a credential

• POST/present-proof/request-proof

For requesting a proof

• GET/kms

For managing the cryptographic material. This interface changes from the previous version

It is worth mentioning new functionalities provided by this component related to the management of
public DIDs.

• GET/did_web/register/

For generating a new DID document (did:web method)

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 66

• POST/did-uself/agent/register

• POST/did-uself/register

Both interfaces are for publishing a DID document following a did:elem method

More information regarding the rest of the interfaces can be found in D3.2 KRAKEN project: D3.2 Self-
Sovereign Identity Solution Final Release.

14.3 Deployment

SSI Ledger uSelf Broker component must be deployed as a docker container following the diagram in
Figure 23 and the instructions together with the source code.

Figure 23: Ledger uSelf Broker deployment

14.4 Source Code

To find the source code for the Ledger uSelf Broker is in a private repository.

There, it is possible to obtain not only the source code but all the needed information for the
deployment, configuration and some instructions on the usage.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 67

15 KRAKEN Company Depute Tool

The Depute Tool is one of the two software tools developed in the KRAKEN project to manage natural
persons acting on behalf of a company.

Each instance of the Depute Tool is used by a company to authorize its employee to perform operations
in the marketplace, for example Data Product publication, selling and buying, on behalf of the
company.
One instance of the Depute Tool is deployed on the KRAKEN platform for demonstration purposes.
To guarantee that only the authorized company’s users can operate on the tool, both the Angular 13
front-end and the restful API used by the frontend, are protected. Moreover, the underlying rest go
agent’s rest API is not exposed.

The Depute Tool’s security is delegated to an instance of KeyKloak [13], an open-source identity and
access management tool deployed on AWS.

The Depute Tool’s user authentication and authorization is based on users and roles configured in
KeyKloak, the protocol used is openid-connect [14]. Technically a Depute issued authorization is
implemented by an SSI Verifiable Credential.

The tool works using the Aries’s Go REST agent implementation; it supports the following Aries
protocols:

• DID Exchange

• Issue-Credentials

Issuing and revocation of credentials are based on the underlying framework functionalities (VC
Schemas and VC revocation/endorsement). Since revocation/endorsement functionalities are not
available in the current Aries-Go implementation [15], KRAKEN will provide a custom implementation.

The tool manages two kinds of SSI entities:

• DID connections

• Verifiable Credentials

15.1 Description

The KRAKEN Depute Tool’s architecture is organised in the following node/components:

• DeputeWeb Node:

o DeputeWebSite standard angular 13 web site;

o DeputeExpressWebServer: an express framework nodejs web server acting as http-
proxy;

• DeputeGoAgent Node

o ArieGOrestAgent: a standard Aries Go REST Agent

• AgentDBDatabaseNode:

o Apache CouchDB instance.

• DeputeDatabaseNode:

o MySql db instance.

Figure 24 below shows the Depute nodes/components described in this Section.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 68

Figure 24: Depute Tool Components

15.2 Interfaces

The Depute Tool’s software components expose the following interfaces:

1. Depute_WebSite: A web user interface to manage The Depute Tool’s authorizations. Figure 25
below shows a screenshot of the Depute Tool’s user interface for an employee.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 69

Figure 25: Depute Tool Components

2. DeputeExpressWebServer:

• BackBackendProxy:

o Acts as a proxy on the following Aries protocols:

▪ DID Exchange

▪ Issue-Credentials

o Acts as a proxy on the MySqlAutorizazionDB api

• WebhookListener: a private to KWCT exposed standard webhook listener (i.e., an http

POST callback, according to a pattern which is widely used in the web development

community) called by the LIM’s Aries Go agent.

3. Aries_GoRestAgent: standard Aries_Go agent protocols used in KRAKEN [16][17] .

4. dbms:

• agentDB: Private to LIM standard interface of CouchDB dbms.

5. dbms_mysql:

• mySQLAuthorizationDB: Private to depute standard interface of Mysql dbms.

15.3 Deployment

The Depute Tool instance is deployed as three containers in Kubernetes on AWS, these containers are
described in Figure 24:

• Depute_ WebSite

• DeputeExpressWebServer

• Aries_GoRestAgent

15.4 Source Code

The source code of these components can be found in the following private KRAKEN GitHub

repositories:

https://github.com/krakenh2020/DeputeAngularFrontEnd

https://github.com/krakenh2020/Depute_HttpProxy

https://github.com/krakenh2020/DeputeAngularFrontEnd
https://github.com/krakenh2020/Depute_HttpProxy

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 70

16 KRAKEN Company Identification Tool

The KRAKEN Company Identification Tool is one of the two software tools developed in KRAKEN to
manage natural persons acting on behalf of a company. The tool manages the active list of companies
that are able to delegate their employees to operate on behalf of the company they work for.

16.1 Description

The KRAKEN Company Identification Tool’s architecture is organized in three tiers:

• KCIT_AdminWebSite: An angular 13 web tool dedicated to KRAKEN’s platform administrator
users, used to populate the KCIT’s_ database. Access to the tool is protected by KeyCloak using
open-id-connect. The tool invokes the TIR_Backend services through KCIT_private interface.

• KCIT_backend: A server-side component that exposes two REST API:

o KCIT_Private_CRUD_api: protected by KeyKloack and accessible only by the
KCIT_AdminWebSite, it provides Create, Read, Update and Delete (CRUD)
functionalities on the KCIT_database entities.

o KCIT_public_Api: published to internet, provides methods to be used by the
Marketplace.

• KCIT database: is the container of the configuration information of the KRAKEN Company
Identification Tool.

Figure 26 below shows the KRAKEN Company Identification Tool components described in this Section.

Figure 26: KCIT Components

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 71

16.2 Interfaces

The described components expose the following interfaces:

• KCIT_AdminWebSite: A private technical web user interface added to manage the KCIT’s data.

The interface, after user authentication, offers the functionalities to manage the list of configured
companies that are able to delegate an employee to operate on behalf of themselves.

Figure 27 below shows a screenshot of the private KRAKEN Company Identification Tool web interface.

Figure 27: KCIT web interface

KCIT_CRUD_API:

Not documented here because it is used only by the KCITAdmin website.

KCIT_Rest_Api:

• GET/kcit/activeCompanies
Return the list of the companies authorized to delegate their employees

• GET/kcit/activeCompanies/did/
Return the configured company that has the did passed as parameter

16.3 Deployment

The KCIT tool will be deployed as two docker containers as represented in Figure 26.

16.4 Source Code

The source code of these components can be found in the following private KRAKEN GitHub
repositories:

https://github.com/krakenh2020/KCIT_angularFrontEnd

https://github.com/krakenh2020/KCIT_httpProxy

https://github.com/krakenh2020/KCIT_angularFrontEnd
https://github.com/krakenh2020/KCIT_httpProxy

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 72

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 73

17 KRAKEN Revocation & Endorsement Registry

The KRAKEN Revocation & Endorsement Registry (KRER) was developed in the context of WP3 within

T3.2 Universal Ledger Resolver activities. As a detailed information of this components has been

generated in D3.2 Self-Sovereign Identity Solution Final Release, this document provides a general

overview of the component and the necessary information to be integrated with the marketplace. Due

to the Revocation & Endorsement Ledger will be released as a future service in the European

Blockchain Services Infrastructure (EBSI) V2+ architecture, the KRAKEN Consortium decided to

implement a microservice (KRER) mimicking its use. The development of KRER was based on the

documentation provided at this moment by EBSI.

17.1 Description

The KRER component stores information related to the validity of the verifiable credentials (or

Verifiable Presentations), such as the status (valid, revoked, suspend). Basically, the KRER comprises a

core module which is offering the REST API services and the credential status storage.

17.2 Interfaces

The KRER offers 3 interfaces:

• credential/add (POST): Creates the status of a new credential.

• credential/update (PUT): Updates the status of an existing credential.

• credential/status (GET): Public interface for providing the credential status.

17.3 Deployment

The KRER has been developed to be deployed by the VC issuer, which keeps the control and manage

the status of the credentials. With this aim a docker image is provided. Only the configuration of the

open ports and the allowed IPs will be needed.

17.4 Source Code

As indicated in D3.1 the source code of this component can be found in the following private KRAKEN

GitLab repository:

https://scm.atosresearch.eu/ari/ledger_uself/ssi-ledgeruself-krer

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 74

18 Privacy Metrics Tool

The Privacy Metrics Tool produced by AIT has been integrated into the KRAKEN Marketplace Frontend
codebase and is described in this Section of the report. The Tool is applicable to data subjects that are
publishing batch Data Products for direct data download and quantifies the level of privacy that data
subjects can expect when sharing their batch Data Products within the marketplace. Details on the
privacy metrics can be found in the Annex of this deliverable.

18.1 Description

The computation of the privacy metrics is performed in three steps. First, the user is asked to complete
a questionnaire on some general facts that are not dependent on the data set that is sold. We note
that in the current integration this questionnaire is always presented to the user to avoid storing data
on a service of the marketplace. Alternatively, the data could be stored on the user’s device which is
currently not implemented. Second, the user is asked about dataset specific data. This questionnaire
involves a set of questions on the types of data included in the data sets, such as educational data,
medical data, and other potentially identifiable data. Last, after completing both questionnaires, the
privacy metric is computed and presented to the user a keen to password strength indicators.

18.1.1 Description

The first questionnaire contains questions on dataset independent inputs that help to adjust the
privacy metrics based on the user’s self-assessment on the importance of privacy. It also takes into
account a user’s background and perceived threats. The questionnaire is depicted in Figure 28.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 75

Figure 28: Dataset independent inputs to compute the privacy metrics

18.1.2 Dataset Independent Inputs

In the next step, the user is asked to provide some metadata on the datasets the user intends to sell
on the marketplace. For the privacy metrics relevant data points include information on the country
and city of residence, respectively, Global Positioning System (GPS) location data, personal data such
as age, birthday, gender, body height and weight, or other health data. Additionally, the number of
data sets with similar data points also has an impact on the privacy metric and is hence taken into
account. The full questionnaire is depicted in Figure 29 below.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 76

Figure 29: Dataset dependent inputs for the privacy metrics

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 77

18.1.3 Privacy Value

Finally, the computed privacy metric is displayed to the user. Similar to password strength indicators,
the colored bar is displayed where red indicates a high risk to a user’s privacy whereas are green
colored bar indicates a low risk. An example of this bar is presented in Figure 30 below.

Figure 30: Example result from the privacy metrics computation

18.2 Interfaces

The privacy metrics widget provides three React components:

• AdversaryStrength: this component displays a questionnaire on dataset independent
inputs for the computation of the metrics.

• Input: this component displays a questionnaire on the dataset dependent inputs for
the computation of the metrics.

• PrivacyVal: this component displays the result of the privacy metrics computation
based on the inputs from the other two components to the user.

The integration into the KRAKEN marketplace uses all three components to request the necessary
inputs and to present the result to the user.

18.3 Deployment

The privacy metrics are integrated into user interface of the KRAKEN marketplace. Therefore, the
components are deployed with the same process as the KRAKEN marketplace user interface. For test
purposes, a development webserver can be started via npm.

18.4 Source Code

The full source code is publicly available at https://github.com/krakenh2020/kraken-privacy-metrics.
The code is released under the Berkeley Software Distribution (BSD)-3-clause license to promote its
use beyond the integration of the privacy metrics widget into the KRAKEN marketplace.

https://github.com/krakenh2020/kraken-privacy-metrics

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 78

18.5 Baseline Technology and Tools

The main goal for the development of the privacy metrics widget is that none of the data required for
the computation leaves the user’s device. Therefore, the widget was designed to perform all
computations on the user’s device. For web-based services such as the KRAKEN marketplace, Javascript
is a natural choice to accomplish this goal. Hence, the privacy metrics widget and all the computations
have been developed with Javascript and the user interfaces employs the React framework.

https://reactjs.org/

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 79

19 Conclusion

This D5.6 deliverable document describes the software of the final KRAKEN marketplace release. Over
the course of this project, through the integration of multiple partners and third-party technologies at
varying levels of technology readiness, a fully functional marketplace has been established which will
be subsequently tested in the education and health pilots due to take place in September 2022.

The first marketplace release delivered as part of D5.5 in September 2021 included functionality that
allowed users to exchange and monetise their data using the encrypted batch data transfer through
directory sharing modality. It included an initial integration with the uSelf Broker of the SSI Agent,
allowing users to register and login to the marketplace using the SSI mobile app and an initial
integration with the MPC network, which provided a mechanism for key distribution in the batch data
sharing modality. It also included an integration with the Lynkeus’ blockchain, to provide a blockchain-
based permissioning layer and the xDai blockchain for handling payment transactions between data
providers and data consumers.

This conclusion summarises the major achievements in the software development for this final release.
Since the initial release, time has been spent expanding the data exchange modalities available in the
KRAKEN marketplace. In addition to the already available batch data exchange modality, new
modalities have been developed and integrated that allow users to also create Data Products for
privacy preserving analytics and Data Unions.

Analytics Data Products, realised through an innovative infrastructure that integrates blockchain-
based permissioning, token-based payments and distributed computations, allow marketplace users
to perform privacy-preserving analytics on datasets in a CSV format. Within this infrastructure, an MPC
network computes standard statistics using functions such as average, standard deviation and min and
max values. The marketplace allows these functions to be computed on multiple Data Products
containing matching variables in a single data buyer transaction. Functionality has also been developed
to share revenues in cryptocurrency between each owner of the Data Products used in the
computation, and to retain a fee for the marketplace in return for the provision of this service.

Through the additional marketplace integration with the Streamr Network and Streamr’s Data Union
Framework, the final release also allows the publishing of a Data Union Data Product in the KRAKEN
marketplace. Data Unions consist of multiple persons, or even entities, opting in with the use of a third-
party application to share and monetise data streams in a single Data Product that is managed and
administered by a Data Union Manager. An example of this could be a mobile app that allows multiple
individuals with health or fitness data being generated on their mobile phones to opt-in to a Data
Union. Data streams are transported from data providers to data consumers using the decentralized
Streamr Network, and revenues in cryptocurrency generated when access to the Data Union sells
within the KRAKEN marketplace are shared between all members of the Data Union. A set percentage
of the revenue can also be directed to the Data Union Manager in return for their services.

As well as the additional data exchange modalities realised within this final release, other major
achievements include the further development of the marketplace user registration and login
functionalities. Within this release, through the integration with the uSelf Broker of the SSI Agent, KCIT
and Depute Tool, a legal person working on behalf of a company or institution to purchase or sell data
within the marketplace can register by presenting a proof of their Attorney Credentials that represent
their company affiliation. Within this process the marketplace also verifies the issuer (company) and
verifies that the credential has not been revoked.

Finally, a KRAKEN Marketplace Mobile app has also been developed and integrated with the
Marketplace Backend to allow users to quickly browse Data Products, change permissions and
availability of their own Data Products and see how well their Data Products are performing on the
market.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 80

20 References

[1] KRAKEN Project: D5.5 Marketplace Initial Release, 2021

[2] KRAKEN Project: D2.7 Design for Marketplace Reference Implementations, 2022

[3] KRAKEN Project: D2.6 Marketplace Technical Specification, 2020

[4] KRAKEN Project: D2.3 Final KRAKEN Architecture, 2021

[5] KRAKEN Project: D3.2 Self Sovereign Identity Solution Final Release, 2022

[6] https://streamr.network/discover/data-unions/

[7] https://streamr.network/core

[8] https://streamr.network/docs/streamr-network/intro-to-streamr-network

[9] https://github.com/streamr-dev/streamr-specs/blob/master/PROTOCOL.md

[10] KRAKEN Project: D4.4 Final Implementation of Cryptographic Libraries, 2022

[11] KRAKEN Project: D5.3 Initial KRAKEN Marketplace Integrated Architecture, 2021

[12] KRAKEN Project: D2.5 KRAKEN Final Technical Design, 2022

[13] https://keycloak.org/

[14] https://openid.net/connect/

[15] Hyperledger Aries Framework Go: https:..github.com/Hyperledger/aries-framework-go

[16] Hyperledger Aries RFC 0023: DID Exchange Protocol 1.0: https//github.com/Hyperledger/aries-
rfcs/tree/main/features/0023-did-exchange

[17] Hyperledger Aries RFC 0453: Issue Credential Protocol 2.0:
https://github.com/hyperledger/aries-rfcs/tree/main/features/0453-issue-credential-v2

https://streamr.network/discover/data-unions/
https://streamr.network/core
https://streamr.network/docs/streamr-network/intro-to-streamr-network
https://keycloak.org/
https://openid.net/connect/
https://github.com/hyperledger/aries-rfcs/tree/main/features/0453-issue-credential-v2

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 81

21 Annex 1: Selecting Privacy Metrics for KRAKEN

1. Introduction

KRAKEN is a data market for privacy-sensitive data and “aims to enable the sharing, brokerage, and
trading of potentially sensitive personal data, by returning the control of this data to citizens
throughout the entire data lifecycle” [2]. In other words, KRAKEN is a platform that facilitates the
transfer of data and offers its users a high degree of privacy, which is defined as “the ability of an
individual to control the terms under which personal information is acquired and used” [1]. In order to
give users insights into their privacy while uploading information to this database, KRAKEN’s objective
is to utilize privacy metrics to measure the users’ privacy and provide them with an overview of how
well it is protected.

A privacy metric is defined as the “degree of privacy enjoyed by users in a system and the amount of
protection offered by privacy-enhancing technologies” [2]. More actively worded, privacy metrics are
“measures to determine the susceptibility of data or a dataset to revealing private information” [1].
Privacy metrics try to quantify the level of privacy in a system or the privacy provided by a privacy-
enhancing technology (PET). Subsequently, this Section attempts to identify the right metrics to
measure KRAKEN’s level of privacy.

In order to select the most fitting metrics for KRAKEN, this Section will consist of eight subsections that
try to illustrate and explain how KRAKEN could measure the user’s or data subject’s privacy and why
the chosen metrics are an efficient indicator to quantify privacy. Therefore, the first few parts will
primarily explain and illustrate the playground for privacy metrics by examining existing papers and
research. Whereas the second half of the paper intends to apply those concepts to the KRAKEN
database and identify metrics, as well as give an explanation on how a potential quantification of
privacy might look.

Subsequently, the first part of this Section will discuss the potential output measures for KRAKEN,
which helps to identify the best privacy metric categories for KRAKEN. The second part focuses on the
adversary model and specifies the different adversary capabilities that KRAKEN needs to consider. The
third part gives an overview of the type of data that KRAKEN tries to protect by examining the Use
Cases from the KRAKEN deliverables. Furthermore, this Section will also elaborate on linkage attacks
and data that might appear to be anonymous but still has the ability to harm a user’s privacy if it gets
into the wrong hands. The fourth subsection talks about the different inputs needed to calculate the
privacy metrics and explains how this database system could a final privacy result. Subsection five will
explain which privacy metrics can be considered for KRAKEN and why they are more efficient than
other metrics. The sixth part talks about the target audience for KRAKEN and how the privacy metrics
should work and look from the user’s point of view. Part seven explains the recommended
quantification of the KRAKEN privacy metrics and tries to give insights on why those measures are
efficient and effective in attaining their goal in offering the user information about their privacy.

Lastly, this Section will offer recommendations on how privacy metrics could be implemented.
Moreover, this subsection will discuss how the input for the privacy metrics can be obtained and how
the output should look. Besides, part eight also offers pseudo-code to facilitate the implementation of
the metric’s quantification.

2. Output Measures

The output of a privacy metric refers to the kind of property that the metric measures. Each output
property represents a different privacy aspect. Subsequently, it is essential to note that a single metric
cannot capture the entire concept of privacy. So, it is recommended to utilize metrics from various
concepts to get a complete privacy estimate [1]. There are eight output categories, which were
identified by Eckhoff and Wagner [1].

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 82

1. Uncertainty: Uncertainty metrics are based on the assumption that the system’s
privacy is high if the uncertainty of the adversary´s estimates is high.

2. Information gain or loss: In relation to information theory, the amount of privacy lost
based on the disclosure of information or the amount of information gained by the
adversary is measured by privacy metrics focusing on information gain or loss.

3. Data similarity: Data similarity metrics measure the similarity of data either within a
dataset or between two sets of data. In this way, these metrics abstract from the
adversary and focus on the properties of data.

4. Indistinguishability: Metrics based on indistinguishability analyze the various
outcomes of the privacy mechanisms. If the adversary cannot distinguish between any
pairs of outcomes, privacy is considered high.

5. Adversary´s success probability: Metrics using the success probability describe the
likelihood of the adversary´s attempt to reveal privacy. In this way, low success
probability correlates with high levels of privacy.

6. Error: Error-based metrics measure the correctness of the adversary´s
estimate, i.e., the distance between the correct outcome and the prior estimate. In
this context, high correctness directly relates to low privacy levels.

7. Time: Time-based metrics consider the time until the adversary succeeds in breaking
the privacy of the system. Longer times correlate to higher privacy levels.

8. Accuracy or precision: Some privacy metrics quantify how precise the adversary´s
estimates are. More accurate estimates correspond to lower privacy.

Since KRAKEN provides a new PET, the focus should be on displaying the efficacy of this project. As a
result, the best metric categories for this project are accuracy, similarity, and indistinguishability. The
reason is that metrics in the categories, time, error, and adversary’s success probability, have a higher
focus on the adversary, whereas the other three categories concentrate on the efficacy of the PET,
which is a more suitable approach for a project such as KRAKEN.

Nonetheless, it is also beneficial to include metrics that focus more on the adversary, such as time,
error, or the adversary’s success probability, to capture the entire concept of privacy. This approach
would allow KRAKEN to get a complete and compact estimate of privacy.

3. Adversary Model

The adversary’s goal is to compromise users’ privacy and learn sensitive information, such as user
identities and user properties [1]. To pick the most relevant metrics for KRAKEN, one must know the
adversary’s capabilities, such as its knowledge or resources. Furthermore, it is vital to identify the
adversary’s goals and what type of information it is trying to get. LINDUDUN, a threat modeling
methodology for systematically analyzing privacy threats in software architectures, identified ten
major threats by analyzing the KRAKEN architecture [2]. These threats are shown in Table 1 below and
will be utilized to determine the adversary’s fitting capabilities and goals. The privacy threats that are
marked green have a low likelihood, impact, and priority, and therefore, they will not be considered.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 83

Threat Likelihood Impact Priority

Linkability in one or more storages. Medium Medium Medium

Identifiability in one or more storages. Low High Medium

Detectability of data existence. Medium Low Low

Detectability in communication between different trust
domains.

Low Low Low

Linkability of IP addresses in communication between different
trust domains.

Low Medium Low

Linkability of IP addresses in communication between different
trust domains leads to identifiability.

Low High Medium

Non-repudiation of encrypted data. Low Low Low

Non-repudiation of communication between different trust
domains.

Low Low Low

Unawareness of data owner. Low High Medium

Non-deletion of data in cloud storage. low Low Low

Table 1, Threat Table, Source: Privacy-preserving Analytics for Data Markets using MPC [2]

Table 1 displays the different KRAKEN threats and shows the likelihood, impact, and priority for each
threat. The range for each attribute is low, medium, and high, where low values are colored green,
medium values are colored yellow, and high values are colored red. According to Table 1, the first
threats that this Section will discuss are the ones that have a medium priority. Linkability in one or
more storages is a threat in which the adversary is an insider who exploits storages to raise his or her
chances of linking the user’s data. Similarly, identifiability in ore more storages is a threat that focuses
on an insider adversary. The adversary has access to the data storages and tries to obtain a set of
information that can be linked and ultimately identify one or more users. However, the adversary
would also need additional information other than the one within KRAKEN [2].

The third threat focuses on the linkability of Internet Protocol (IP) addresses in communication
between different trust domains leads to identifiability. This threat focuses on an external or internal
adversary who can access the user’s network and inspect the user’s packets. By doing that, the
adversary can link the IP address to the user’s identity. The last threat with a medium priority is the
unawareness of the data owner. There exists no adversary in this scenario since the data owner is
making his or her data available. For scenarios like this, the best privacy metrics are indistinguishability
metrics because this is the only category that does not focus on an adversary but the data’s properties
[2].

The last two threats discussed have a low priority but have either a medium impact or medium
likelihood. Detectability of data existence is a threat in which the user uploads data on the cloud
without publishing it on KRAKEN. That would allow an external adversary to find out about the
existence of the data. Lastly, the linkability of IP addresses in communication between different trust
domains includes an internal or external adversary who manages to link different events to the same

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 84

user by listening to the user’s requests. In order to be capable of doing that, the adversary must be
skilled and have access to the user’s network [2].

Threat
Local -
Global

Passive -
Active

External -
Internal

Prior
knowledge

Linkability in one or more storages Global Active Internal Not necessary

Identifiability in one or more storages Global Active Internal Not necessary

Detectability of data existence Local Passive External Not necessary

Linkability of IP addresses in
communication between different trust
domains

Local or
Global

Active
Internal or

External
Necessary

Linkability of IP addresses in
communication between different trust
domains leads to identifiability

Local or
Global

Active
Internal or

External
Necessary

Unawareness of data owner Local
Passive or

Active
External Not necessary

Table 2, Threat characteristics

As a result, the adversary’s capabilities, which can be identified from the threats and must be
considered for KRAKEN’s privacy metrics, are as follows [1]:

• Local - Global: Local adversaries can only access parts of the system, whereas global

adversaries can access the entire system.

• Passive - Active: Passive adversaries can only read or observe the system. Active adversaries

can interfere and add, remove or modify information and use that to their advantage.

• External - Internal: External adversaries are not part of the system. Internal adversaries act

from within the system, e.g., because they are working for service providers or third parties

controlling specific components of the system.

• Prior Knowledge: The adversary has additional information about the system or has scenario-

specific knowledge.

Furthermore, the adversary goal that results from the threats is to find out information about the user
and get to know their identity.

4. Data Sources and Use Cases

Defying the KRAKEN’s data source is essential because depending on which data source needs
protection, different metrics apply. The KRAKEN-deliverable 2.6 gives insights into two pilot market
sectors: health and education [3]. This part will discuss potential threats regarding the use cases by
looking at incidents from the past and calling out similar scenarios within the use cases. First, this
subsection will give information about the type of data within KRAKEN and the use cases. Second, it
will discuss threats regarding this data by analyzing past events and reflecting on the use-cases.

First, the type of data within KRAKEN qualifies as published data. Published data “refers to information
that has been willingly and persistently made available to the public” [1], e.g., statistical databases and
information that individuals choose to disclose. If published data gets into the wrong hands, it turns
into re-purposed data, which is defined as data used for different purposes than the purpose it was
initially acquired [1]. One example of published data turning into re-purposed data is adversaries trying
to identify anonymized individuals or reveal sensitive information using the user’s published data,
which was also the adversary’s goal, as discussed in part 3.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 85

In the past, there were multiple incidents where published data turned into re-purposed data. In most
of these scenarios, the data that was misused seemed highly anonymous. But even if data appears to
be anonymous, it still can reveal information to an adversary. Those incidents are known as linkage
attacks, which happen when seemingly anonymous data are combined to reveal real identities [4]. An
example of such data is the zip code, birth date, and gender of Americans. Although this published
data appears to be anonymous, in combination, it is already enough information for an adversary to
identify 87% of the American population [5]. Two past events that are famous examples of linkage
attacks, in which an adversary revealed people’s identities by giving away data that seemed
anonymous, are the case of Governor William Weld [8][9] and the Netflix Prize [6][7].

The case of Governor William happened in 1996. It all started during a commencement ceremony at
Bentley College, the Governor of Massachusetts collapsed, and he had to be taken to a hospital, where
he received multiple diagnostic procedures. The next day, Wend was already discharged and recovered
quickly [8]. The second event happened in the mid-1990ies, in which the Group Insurance Commission
(GIC), a government agency, purchased health insurance for state employees and decided to release
the records to any researcher who requested them. The records included every state employee’s
hospital visit at no cost. Like Netflix, they removed any direct identifiers to ‘anonymize’ the data. But
it still had information such as ZIP code, birth date, or gender.

When the GIC released the data, Governor Weld supported their action and claimed that the patient’s
privacy was protected since the identifiers were deleted. As a result, an MIT graduate student, Latanya
Sweeney, got involved and tried to find Governor Weld’s hospital data in the GIC records. In addition
to the GIC data, Sweeney bought the voter rolls from the city of Cambridge, which is Weld’s hometown
and has a population of 54,000. Then, by comparing the two datasets, it was easy for Sweeney to
identify Weld because within Cambridge, only six people had the same birth date, only three were
men, and only one lived in the same ZIP code. Therefore, Sweeney showed that it was easy to re-
identify people through the GIC records through reverse-engineering [9].

The case of the Netflix Prize happened in 2006. Netflix created a competition known as the Netflix
Prize. The competition’s goal was to develop a recommendation system that was 10% more accurate
than the previous one. Therefore, Netflix published a dataset that contained 10 million movie ratings,
including the name of the movie and the date of the rating, by almost 500,000 customers so that
people could work on this task. But to make the data anonymous, Netflix changed the users’ names to
unique IDs [6]. Netflix was convinced that this would already be enough to protect the data, and when
they were asked if there is any data in the dataset that should be kept private, Netflix gave the
following answer:

“No, all customer identifying information has been removed; all that remains are ratings and dates.
[…] Even if, for example, you knew all your own ratings and their dates, you probably couldn’t identify
them reliably in the data because only a small sample was included (less than one-tenth of our
complete dataset), and that data was subject to perturbation. Of course, since you know all your own
ratings, that really isn’t a privacy problem, is it?” [7].

But, according to Narayanan and Shmatikov, “removing the identifying information from the data is
not sufficient for anonymity. The attacker may be able to join the (ostensibly) anonymized dataset with
auxiliary data, resulting in a complete breach of privacy”, which was the case with the Netflix Prize
dataset. Narayanan and Shmatikov managed to de-anonymize some of the Netflix data and identify
two users by comparing the rankings and timestamps with public information on IMDb. That allowed
them to show how little information is needed to breach a person’s privacy [6] [7].

The scenarios above showcase the dangers of underestimating data and illustrate what can happen if
published data is misused and turned into re-purposed data. Consequently, it is crucial to pay attention
to such scenarios within the KRAKEN database and be pro-active towards potential linkage attacks.

The first KRAKEN use-case that gets described in Deliverable 2.6 [3] focuses on health data.
Consequently, 4.1 gives an overview of different types of information that fall in the category of health
data and have the potential to lead to linkage attacks.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 86

4.1 Health Data

• Heart rate: The heart rate can give away a lot of information about a person, such as their

health situation or fitness level. For example, the adversary would be able to see if the user

has a slow, fast, or normal health rate. As a result, an adversary could make assumptions about

the user and their condition by accessing this information. Therefore, the adversary could

increase their chances of identifying the user, lowering the user’s privacy.

• Prescriptions: Information about a user’s prescriptions can benefit the adversary since they

would be able to see what kind of medication a user receives or even what type of disease the

user has. That would help the adversary close down the circle of potential identities for this

document and increase his chances of succeeding, negatively affecting the user’s privacy.

• Check-in & Check-out date: The user’s check-in and check-out date inform an adversary about

the timeframe in which the user was in a hospital. As a result, the user could try to find out by

using tools such as Facebook, which people were in the hospital during this time and close

down the number of potential identities. Therefore, this type of information harms the user’s

privacy.

• Patient’s doctor in charge: Information about the patient’s or user’s doctor in charge would

tell the adversary, which station the user is in, what their potential disease/problem is, and

even what type of insurance the user has, for example, if it is a doctor that only treats clients

with private insurance. Therefore, figuring out this information would have a negative impact

on the user’s privacy.

• Laboratory/test results: The user’s laboratory and test results could provide the adversary with

all types of information about the user, such as blood type, diseases, or allergies.

Consequently, it would facilitate the adversary’s goal of identifying the user, which lowers the

user’s privacy.

• Diagnosis: The user’s diagnosis gives away information about the user’s disease/injury/etc.

Therefore, it makes it easier for the adversary to figure out their identity. That leads to a

negative impact on the user’s privacy.

• Therapy sessions: Information about the user’s therapy sessions would give away details about

the user’s treatment and injury/disease/etc. Furthermore, it might even inform the adversary

about the time and location of the therapy. That would close down the circle of potential

identities and, therefore, lower the user’s privacy.

• Income information: Income information lets the adversary know to which income class the

user belongs. That would reduce the number of potential identities and raise the chances of

identifying the user.

• Insurance company/information: Information about the insurance company or type of

insurance gives away information such as where the user is from and if the user has public or

private insurance. That would make it easier for the adversary to identify the user since they

can restrict the number of potential identities.

The second KRAKEN use-case is education data. Subsequently, 4.2 gives an overview of different types
of information that fall in the category of education data and have the potential to lead to linkage
attacks.

4.2 Education Data

• Class ranks: Class ranks show in which percentile the user is. For example, the user is in the top

10%. Therefore, the adversary could improve their chances of identifying the user by using the

class rank combined with additional documents or information the adversary found out.

Consequently, uploading the user’s class ranks would reduce their privacy.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 87

• Class enrollment: The class enrollment tells what classes a user is currently enrolled in and

which classes a user took in the previous academic years. Consequently, the adversary could

assume the user’s major and minor, as well as how fat the user is in their studies and when

they started their academic career, which would have a negative impact on the user’s privacy

since it makes it easier for the adversary to figure out the user’s identity.

• Scholarship information: Information about the user’s scholarship allows the adversary to find

additional information about a user. For example, the scholarship could tell the adversary if

the user belongs to a minority, their gender, etc. Subsequently, it would raise the adversary’s

chances of finding out the user’s identity and lower the user’s privacy.

• Graduation date: The graduation date would allow the user to narrow down the number of

possible identities because universities have public numbers about how many students

graduated in an academic year. Therefore, the adversary would know how many potential

identities there are, and they would be able to identify the user by using additional resources

and information. Therefore, this type of information has a negative impact on the user’s

privacy.

• Enrollment date: The enrollment date would allow the user to narrow down the number of

potential identities because universities have public numbers about how many students

enrolled in an academic year. Therefore, the adversary would know how many possible

identities there are, and they would be able to identify the user by using additional resources

and information. Consequently, this type of data might lower the user’s privacy.

• Campus jobs: Information about a user’s campus jobs can help the adversary increase their

chances of identifying the user. For example, suppose a document contains the information

that the user has a particular campus job. In that case, the adversary could either find the

person on the university’s website or look up web pages, such as LinkedIn, to identify the user.

As a result, uploading a user’s campus job would hurt their privacy.

• Participation records: Participation records, such as information on which student

organizations a student is a part of, allows an adversary to find out the user’s identity easily.

Most student clubs and organizations have public web pages that show their members. If an

adversary manages to obtain this information, they can look up the people in those clubs and

organizations and then identify the user. Subsequently, this would have a significant impact

on the user’s privacy.

• Meal plan: Meal Plans can give away a high amount of information about a user, such as their

housing situation and school year. For example, universities in the USA offer different meal

plan options depending on what year you are and your housing situation. For instance, if a

person is a sophomore and lives off-campus, this person will receive a different meal plan than

a freshman who lives on-campus. Therefore, an adversary can close down the circle of

potential identities by obtaining this type of information, which would negatively impact the

user’s privacy.

• GPA (Grade Point Average): GPA gives information about a user’s academic success and allows

the adversary to assume which class percentile the user is. Consequently, it would lower the

number of potential identities, which would reduce the user’s privacy.

Those are just a few examples of inconspicuous data. Even though it doesn’t seem significant on its
own, but as the case of Governor Wend and the Netflix Prize showed, it is necessary to pay attention
to data even if it appears to be anonymous.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 88

5. Input Data

There exist five input categories one can use to calculate privacy metrics. Depending on the chosen
metrics, different inputs apply. Therefore, it is crucial to pay attention to which inputs one has available
before deciding what privacy metrics will be implemented. The five input categories, according to
Eckhoff and Wagner, are as follows [1]:

• Adversary’s estimate: The adversary’s estimate results from the adversary’s effort to breach

privacy.

• Adversary’s resources: The resources that are available to the adversary.

• True outcome: The true outcome is used to judge how good the adversary’s estimate is. But

this information is not available to the adversary, so they can’t compute metrics that use true

outcome.

• Prior knowledge: Prior Knowledge describes concrete, scenario-specific knowledge that the

adversary has.

• Parameters: Parameters describe threshold values. The sensitivity of attributes, which

attributes are sensitive or desired privacy levels.

The idea for the KRAKEN privacy metrics is to utilize metrics from multiple categories to get a privacy
metric that is compact and offers detailed insights about a user’s privacy. Therefore, if applicable,
either of the above inputs might be used if they are needed to get a chosen metric. But since KRAKEN
tries to offer privacy metrics that are simple and easy to understand, it is recommended to use the
inputs from Table 3.

Adversary estimate True outcome Parameters

Table 3, KRAKEN Input

The idea to get those inputs is that some are received directly from the user, whereas the other inputs
come from KRAKEN. For example, if a user wants to upload a document or file onto the KRAKEN cloud,
they will need to fill out a form or give information that will translate into meta-data. This meta-data
will then represent one of the inputs from Table 3 and calculate the privacy metrics. Furthermore, the
user will also have to decide what type of adversary they want and need to protect their data. For
example, some users might have less sensitive data to upload and therefore, are less concerned about
the adversary’s abilities and how it would affect their privacy.

In contrast, another user might upload highly sensitive data and needs to know how secure their
privacy is should it be affected by a highly-skilled adversary. As a result, the user will have different
adversary categories to pick from, which will be discussed in more detail later. The final result of the
privacy metrics should be a combination of all the utilized metrics. Although, it depends on the chosen
privacy metrics to determine what precisely the combination would look like. The broad idea behind
it looks as follows and will be discussed in more detail in the Quantification section:

After the user gives KRAKEN the information about their data, the system will use the input to calculate
the user’s privacy. Each metric uses an interval that is separated into six sub-intervals which represent
the different privacy levels. The six privacy categories can be seen in Table 4. For example, suppose the
value for a privacy metric is high. In that case, it will belong to the “Very High”-privacy category,
whereas, if it is low, it will belong to the “Very Low”-privacy category.

Each privacy result has its own value range, where the lowest category has the value 1, and the highest
has the value 6. In the end, the metric values will be summed up and divided by the number of metrics
to calculate an average privacy value. The average privacy value will then be compared to a grading
system, as shown in Table 4, which gets the user’s privacy level.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 89

Privacy Category Value Range

Very High 6 – 5.5

High 5.49 – 4.5

Moderately High 4.49 – 3. 5

Moderately Low 3.49 – 2.5

Low 2.49 – 1.5

Very Low > 1.5

Table 4, Privacy category: Grading scheme

Example #1 and Example #2 will give a brief and straightforward overview of how the calculation is
supposed to work.

5.1 Example #1

Table 5 illustrates what the calculation of the user’s privacy should look like. The column declared as
output category shows to which output category the metrics from column two to column four belong,
and the last column shows the results of each row. But before further explaining how the calculation
works, it is essential to note that this calculation would work regardless of the number of metrics used.

For example, one could use only two output categories with one metric per category and still would
receive a valid output. The important part is choosing the right metrics and utilizing them in a way that
makes sense for the database. Furthermore, the following examples do not offer insight into the
quantification of the metrics but rather explain how the chosen metrics and output categories could
be combined to get one final privacy metric.

As can be seen in Table 5, the second and third column displays the metrics of data similarity and
indistinguishability. Both categories consist of three metrics, whereas only two metrics are utilized
from the other three output categories. That doesn’t mean that one category is more efficient than
another or that one category has more metrics than another. The only purpose of this example is to
show how different metrics from different categories can be combined.

Metric 1 shows that it has the value 6, Metric 2 displays that it holds the value 4, and metric 3 has the
value 5. Once the metrics got calculated and assigned to their values, the values of each output
category will be summed up. Therefore, data similarity has a total of 15. The same procedure will be
done for the four other output categories as well. Therefore, indistinguishability has a total of 12,
accuracy sums up to 9, error is 5, and adversary’s success probability holds 3.

Afterward, the totals will be summed up, which can be seen in row seven, leading to a total of 44. After
that, the value of 44 will be divided by 12, the number of metrics used, to get an average privacy value
for the calculated metrics. The final result is 3.67, and once the final result is calculated, the value gets
compared to Table 4 and assigned to its privacy category. The user would have moderately high privacy
in this scenario since the final result is between 4.49 and 3.5.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 90

Output Category Metric 1 Metric 2
Metric

3
Result

Data Similarity
Very High 🡪

6
Moderately

High 🡪 4
High 🡪

5
6 + 4 + 5 = 15

Indistinguishability
Moderately

Low 🡪 3
Moderately

High 🡪 4
High 🡪

5
3 + 4+ 5 = 12

Accuracy High 🡪 5
Moderately

High 🡪 4
/ 5 + 4 = 9

Error
Moderately

Low 🡪 3
Low 🡪 2 / 3 + 2 = 5

Adversary’s Success
Probability

Low 🡪 2 Very Low 🡪 1 / 2 + 1 = 3

Add results / / / 15 + 12 + 9 + 5 + 3 = 44

Divide by 12

(Divide by number of
metrics)

/ /

44 / 12 = 3.67

🡪Moderately High

•

Table 5, Privacy metrics calculation: Example 1

5.2 Example #2

Table 6 illustrates a second example of how the metrics are combined to get the user’s privacy. Once
again, the column declared as output category shows to which output category the metrics from
column two to column four belong, and the last column shows the results of each row. The second
row displays the output category data similarity and its metrics. This time it only has one metric with
low privacy. Therefore, the total for data similarity is 2.

The same procedure will be used for the other output categories. Subsequently, indistinguishability
sums up to 11. Accuracy sums up to 12, error has a total of 15, and adversary’s success probability has
a total of 10. The summation of the output category results is 50. This value gets divided by the number
of metrics that were used, which is 12. Consequently, the average privacy metric for this scenario is
4.55, which tells the user that their privacy is high since the result is between 4.5 and 5.5.

This time the output categories utilized a different number of metrics for each output category, but
the final result calculation still worked the same. Subsequently, it should be evident that this approach
works for any combination of output categories and metrics.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 91

Output Category Metric 1 Metric 2 Metric 3 Result

Data Similarity Low 🡪 2 / / 2

Indistinguishability Very High 🡪 6 High 🡪 5 / 6 + 5 = 11

Accuracy
Moderately

High 🡪 4
High 🡪 5

Moderately Low
🡪 3

4 + 5 + 3= 12

Error High 🡪 5 Very High 🡪 6
Moderately

High 🡪 4
5 + 6 + 4 = 15

Adversary’s Success
Probability

Very High 🡪 6
Moderately

High 🡪 4
/ 6 + 4 = 10

Add results / / /
2 + 17 + 9 +
11 + 10 =

Divide by 12

(Divide by number of
metrics)

/ / /
50 / 11 = 4.55

🡪 High

Table 6, Privacy metrics calculation: Example 2

6. Potential KRAKEN Privacy Metrics

Output Categories Adversary Characteristics Available Input Data Data Sources

Accuracy Local – Global Parameters Published Data

Similarity Passive – Active Adversary Estimate Re-purposed data

Indistinguishability External – Internal True Outcome

Uncertainty Prior knowledge

Information Gain

Table 7, KRAKEN's characteristics for privacy metrics

Table 7 summarizes the different attributes, characteristics, and categories defined in the earlier parts
of this Section. The first column shows the main output categories that should be used for the privacy
metrics. The first three categories were chosen because they give a good indicator of KRAKEN’s
efficacy. But as mentioned earlier, it is also recommended to use a few metrics from either time,
information gain, uncertainty, or adversary’s success probability to get a complete estimate of privacy
in KRAKEN.

Column two displays the different adversary characteristics which were identified through the KRAKEN
threats. Some of them oppose each other, such as local and global or passive and active. However, it
is still important to pay attention to either characteristic since an adversary can have a different
characteristic, depending on the threat scenario. For example, linkability in one or more storages
focuses on an internal adversary, whereas unawareness of data owners concentrates on external
adversaries.

Column three shows the different input data that will be needed to get the privacy metrics. Depending
on the chosen metrics, different inputs apply. For KRAKEN, we identified three particular inputs to be
the most reliable since they allow us to keep the privacy metrics simple. Those inputs are adversary
estimate, true outcome, and parameters. Through those inputs, it should be possible to get a compact
privacy metric and inform the user how low or high their level of privacy is within KRAKEN.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 92

The last column summarizes the two types of data within the KRAKEN database. First, most of the data
will consist of published data, which is described as “information that has been willingly and
persistently made available to the public” [1]. Second, the data can turn into re-published data, which
is defined as information used for a different purpose than intended.

7. Target Audience

Since KRAKEN’s target audience will consist of many laypeople, it is beneficial to select privacy metrics
that are easy to understand. Therefore, each privacy metric must have an intuitive interpretation. A
potential consideration would be implementing a universal “translation” of the privacy metrics that
allow the users to understand how safe their privacy is. For example, the American grading system
(Letter Grades: A, B, C, D, E, F) could be an option to display the user’s privacy. Another option would
be using a more common visualization and depiction of privacy metrics. Many online services that
require the user to create a password have an indicator that lets them know how safe their password
is. The safety degree in these cases ranges from “Weakest” to “Strongest,” as shown in Figure 1.

Figure 1, Practical Example of Privacy Metrics depiction, Source: OSU ONID

Furthermore, it is also vital to make it easy for the user to give KRAKEN information about their data
and potential adversaries. As discussed in Section 5, the user will need to provide additional
information about the document or file they want to upload to create meta-data for the privacy
metrics and decide what type of adversary they need protection against. First, the adversary categories
for KRAKEN can be separated into five different qualitative values, according to the National Institute
of Standards and Technology (NIST). The five adversary capability values are [10]:

• Very high: The adversary has a very sophisticated level of expertise, is well-resourced, and can

generate opportunities to support multiple successful, continuous, and coordinated attacks.

• High: The adversary has a sophisticated level of expertise, with significant resources and

opportunities to support multiple successful coordinated attacks.

• Moderate: The adversary has moderate resources, expertise, and opportunities to support

multiple successful attacks.

• Low: The adversary has limited resources, expertise, and opportunities to support a successful

attack.

• Very Low: The adversary has minimal resources, expertise, and opportunities to support a

successful attack.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 93

Even though NIST mentions five categories to represent an adversary’s capability, it is recommended
to decide on an even number of capability values to eliminate the middle choice. Therefore, it might
be beneficial to split it into Moderately High and Moderately Low to choose from an even number of
values. That would leave KRAKEN with six different categories to represent the user’s privacy and the
advisory’s capabilities. The six categories are as follows:

Very Low Low Moderately Low Moderately High High Very High

Table 8, Privacy categories for KRAKEN

8. Quantification

As discussed earlier, the metrics’ goal is to be simple and to give the user a brief overview of how their
privacy in KRAKEN is affected by uploading or downloading a file. Consequently, this Section tries to
propose potential metrics that are derived from the metrics discussed by Eckhoff and Wagner and
illustrate how KRAKEN might use them in a practical setting. Before going into more detail on how
those metrics might look, it should be said that most of the metrics that were identified in other papers
did not aim to give a user a particular degree or value of their privacy. Those metrics try to show and
explain how one can make their data more private by utilizing methods that make the data more
secure.

For example, k-anonymity, one of the privacy metrics from [1], is a disclosure technique for releasing
information from a private table so that the identity of individuals to whom the data refers cannot be
definitively recognized [11]. As a result, it is challenging to utilize most of the metrics to satisfy
KRAKEN’s objective since many of the metrics are hard to transform and implement to benefit the
KRAKEN project. Nevertheless, three metrics were identified that could give the user insights on how
and why their privacy is negatively affected by uploading and downloading files to KRAKEN and
informing them how they might increase their privacy again.

8.1 KRAKEN Metrics

The chosen privacy metrics are based on the two methods, differential privacy and confidence interval
width, discussed by Eckhoff and Wagner [1]. One should mention that they only have little in common
with the original theories and only try to grasp the idea behind those metrics. Furthermore, it is also
important to know that these metrics are only recommendations. One can implement additional
metrics or even change the metrics if they identified metrics that fit their purpose better.

Regardless of the chosen metrics, one can utilize the basic idea of this quantification, but for reasons
that will be discussed later, we decided to focus on the following three privacy metrics.

8.1.1 Metric #1: Confidence Interval Width

The confidence interval width says that if “it can be estimated with c% confidence that a value x lies in
the interval [x1, x2], then the interval width (x2 – x1) defines the amount of privacy at c% confidence level
[12]. As a result, to formula for the confidence interval width looks as follows [1]:

Since this metric tries to identify the estimate that a specific value x lies in an interval, KRAKEN will
define a new simplistic metric that solely based on the definition of Confidence Interval Width. For
KRAKEN, the idea is to use the confidence interval width to get the number of files an adversary might
be able to access. Therefore, c% will symbolize the adversary’s estimate, and depending on the
adversary’s strength, the estimate will differ. The objective is to get the absolute number of files that
a potential adversary is estimated to access at c%. For example, an adversary estimated to access 1%
of the user’s files is expected to gain access 1 out of 100 files.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 94

8.1.2 Metric #2: Differential Privacy

According to Lundmark and Dahlman, the idea behind differential privacy is that “if an adversary
cannot differentiate between a data set containing a record, and a data set that does not contain this
record the attacker will not be able to infer any additional information” [13]. Furthermore, the formula
for differential privacy is [1]:

where D1 and D2 are data sets that differ in at most a single row. Since this formula is highly complex
and does not meet the requirement of being simple, it will be simplified and adjusted to make it
applicable for KRAKEN.

The new and less complex metric will also focus on the idea of comparing and differentiating two data
sets. As discussed earlier, linkage attacks are a massive threat to people who share information since
data might appear anonymized, but in connection to additional data, it could lead to someone’s
identification. Subsequently, the idea behind KRAKEN’s differential privacy is to identify the number of
similar files which a user uploaded to the database and find out how likely an adversary is to access at
least two similar files.

8.1.3 Metric #3: Decision Tree

The objective for this metric is to quantify the scenario where someone downloads a file from KRAKEN,
and it utilizes a decision tree to find out how a download affects the user’s overall privacy. The decision
tree can be seen in Figure 2.

Figure 2, Decision tree for Metric #3

Figure 2 shows the different decisions that come into play to determine how a download of the user’s
files affects their privacy. The tree leads to five categories, where Category 1 has the worst and
Category 5 has the best effect on a data subject’s privacy. Therefore, depending on the category result,

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 95

the user’s privacy is affected more or less strongly. The first thing the tree tries to identify is if a file
was downloaded or not. If no file got downloaded, the user’s privacy is not affected and stays the
same. This scenario is called Category 5. If a file got downloaded, then the decision tree would check
for further information on the file. First, the tree would need to find out if there exist files of the same
category within the user’s database. Second, the tree would check if there exists additional information
about the file. Additional info is described as available data outside of KRAKEN, which a third person
could access. In order to implement this, each category within KRAKEN should have a collection of such
data so that the decision tree can see if there is additional info available for a specific category. For
example, for GPS-related data, corona heat maps might be identified as additional information.

If there are multiple files of the same category, and there is also additional information available, a
download would be associated with Category 1. Subsequently, the user’s privacy value will be lowered
by x. But if there exists no additional information, then it will be considered Category 2, and the user’s
privacy will decrease by y, where y < x.

For the case that there exists no other file of the same category, but there is additional information
available for the file’s category, then its download will be Category 3. The user’s privacy will then be
decreased by z, where z < y. The last scenario quantifies the scenario that there are no additional files
of the same category, and there exists no additional information for that category. In this case, the
download would be considered a Category 4 download, where the user’s privacy decreases by w and
w < z.

The values for how much the user’s privacy is affected after a download can be freely chosen since
there is little to no information. Additionally, the category value should not stay constant and change
depending on the number of downloads. The more often the same file gets downloaded, the smaller
the impact on the user’s privacy. For example, the first hundred downloads should more significantly
impact the user’s privacy than the 1,000,000th download.

Subsequently, this subsection proposes using an exponentially decreasing function that adapts the
value of a category with each download of a file. For the simplicity of this Section, the following
function is kept short and easy, but it can be changed in any way to fit one’s needs better.

where priv is the current privacy value, x is the figure that illustrates the category value, and x <= 0,
and n is the number of times a certain file has been downloaded.

8.1.4 Utilization

The two-privacy metrics are supposed to measure the likelihood that an adversary of a particular
strength manages to access at least two data files with similar content. As discussed in Section 4, an
adversary might be able to identify a user by utilizing information that doesn’t seem sensible, but with
additional information, this data can be used against a user.

For example, if a person uploads a recorded run that shows the GPA-tracking, a potential adversary
wouldn’t be able to use only this information to identify the user. But if there are multiple work-outs
in the database, an adversary could combine those files to conclude where the user might live.
Consequently, the suggested privacy metrics aim to notify and show the user their decreasing privacy
if they upload multiple files of the same type or files with similar data.

Table 9 shows the necessary conversions to quantify the adversary strengths and privacy values. The
range presentation for the adversary strength shows how many files in percent an adversary of the
given strength might manage to access. Those ranges can be adjusted and are not an accurate estimate
of an adversary’s success, and depending on the database, those ranges will vary. The only thing that
should be considered is that there must be six intervals to represent each adversary strength so that
these ranges align with the privacy values.

Moreover, the privacy values can also be changed depending on how many different privacy values
are needed or preferred. For example, one could also use only four privacy values from 1 to 4.
Consequently, this table can be adjusted in any way as long as the number of value ranges and privacy
values are the same.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 96

Value Range Category Privacy Value

100% - 84% Very Strong Adversary / Very Low Privacy 1

<84% - 68% Strong Adversary / Low Privacy 2

<68% - 52% Moderately Strong Adversary / Moderately Low Privacy 3

<52% - 40% Moderately Weak Adversary / Moderately High Privacy 4

<40% - 24% Weak Adversary / High Privacy 5

<24% - 0% Very Weak Adversary / Very High Privacy 6

Table 9, Grading scale for privacy metric calculation

Once the table is created and every value is defined, it can be used to quantify the user’s privacy. The
first metric is slightly related to confidence interval width, as mentioned in Metric #1: Confidence
Interval Width. In order to get this metric, the user has to decide which adversary strength they are
afraid of. After the user decides on an adversary strength, KRAKEN has to calculate the average amount
of files an adversary of a specific strength might access. The more files an adversary can access, the
lower is the user’s privacy. In order to transform the number of accessible files to a privacy value, one
must calculate the percent of files the adversary can access and then compare the percent value to
the table.

The second metric builds upon the first calculated metric and is based on differential privacy.
Therefore, this metric shows the probability that an adversary manages to access at least two similar
files. Subsequently, to calculate this metric, the user must give information regarding the number of
similar files. A possible way to get this input will be discussed later. Once the number of similar data is
received, it should be possible to calculate the second metric by using stochastics. The formula to get
the metric’s result looks as follows:

Let n be the number of similar files, k be the number of files accessed by an adversary minus the
number of similar files the adversary is able to access, t be the number of total files, and a be the
number of files accessed by an adversary then:

The result must be compared to Table 9 to get the privacy value for metric 2. Once both metrics are
calculated, the average of both values will be shown to the user as their overall privacy. Further
explaining regarding the calculation of the KRAKEN privacy metrics can be seen in Upload Example #1
and Upload Example #2.

The third Metric only comes into play once a file gets downloaded. It works by using a decision tree
structure to find out how big the download’s impact on the user’s privacy is.

8.2 Upload Example #1

For the first example, let’s assume that the user uploaded their first file and wants to protect their data
from a moderately weak adversary:

In this scenario, the calculation of the privacy metric is fairly simple since there is not much to do to
receive the final value. The first metric that will be calculated is the one that is based on confidence
interval width. Since the confidence interval width is 1, and we assume that the adversary can get 40%
to 52% of the user’s files, the privacy result for this metric is 4 and can be calculated as follows:

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 97

Then one has to look up the value in Table 9, Grading scale for privacy metric calculation, and get the
correct privacy value for the result. In this case, the result would be privacy of 3.

Next, the program must get the privacy metric for Metric 2, which is based on differential privacy. Since
there is only one file uploaded to the program in this scenario, the user’s privacy for this metric is 6
because there is no other file in the database.

In order to get the user’s overall privacy, the program must calculate the average value of privacy
metric 1 and 2:

As a result, the user has a privacy value of 5. In other words, this means that they have high privacy,
according to Table 4.

8.3 Upload Example #2

For the first example, let’s assume that the same user uploaded 100 files. Since the user decide that
they want their data protected from a moderately weak adversary at their first file upload, they do not
have to pick again:

Therefore, the user has 100 files in the database and expects that the user can access 40% to 52% of
the files. Consequently, the privacy for the metric based on confidence interval width will be calculated
as follows:

Afterward, one has to plug the value into Table 9, to get the privacy result for this metric. In this
scenario, the user has a privacy value of 4.

This time the calculation of the second metric is more complex than in Example #1. For the calculation
of the metric based on differential privacy, the program needs a second input that gives an insight on
how many similar files compared to the uploaded file are in the database. How to obtain this input
value will be discussed in Section 9.

But for this example, let’s assume that there are four similar files in the database. The metric aims to
calculate the probability that an adversary manages to access at least two similar files out of all the
user’s files. So, in this scenario, the objective is to figure out the probability that an adversary gets at
least two of those four files when they are able to access 46 files. The calculation looks as follows:

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 98

The result is 0.63, which means there is a 63% probability that a moderately weak adversary is able to
get at least two files of similar data out of the dataset. Consequently, the user’s privacy for metric 2 is
3.

The overall privacy metric is the average of metric 1 and metric 2. Therefore, the user’s privacy is as
follows:

The overall privacy is 3.5, and the user has moderately high privacy, according to Table 4.

8.4 Download Example #1

For illustrating the effects a download might have on a user’s privacy, let’s build on 8.3. We assume
that the user’s current privacy is 3.5 or, in other words, the user has a moderately high privacy and
that the currently uploaded file gets downloaded. The chosen category values can be seen in Table 10,
but it should be mentioned that these values can be adjusted since the ones in the table only have the
purpose of showing how this metric works.

Category Value

Category 1 0.00

Category 2 0.02

Category 3 0.04

Category 4 0.06

Category 5 0.08

Table 10, Category values

By utilizing Figure 3, the process can be visualized, and one can see the different steps that happen to
figure out the effects the download has on the user’s privacy. The yellow fields show the decision tree’s
path for this example. The first step is that a download takes place. Subsequently, the result must be
any of the categories from 1 to 4. Since we already know from 8.3 that the user uploaded files of the
same category, the last question that needs to be answered is if additional information outside of
KRAKEN is assigned to the file’s category type. For this example, we assume that there exist such data.
Therefore, the result for this download is Category 1.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 99

Figure 3, Decision tree example

From Table 10, we get the value for this category, and then this value must be subtracted from the
current privacy value. Consequently, the privacy value after the download is 3.5 – 0.081, which is 3.42,
and the user has, according to Table 4, moderately low privacy.

8.5 Download Example #2

For the second example, let’s assume that this is the second download of the same file from 8.4.
Therefore, the decision tree will act the same way, and the download is a Category 1 risk for the user’s
privacy. The only difference from the previous example is that since it is the tenth download, the
impact on the user’s privacy will be lower. As a result, the privacy value looks as follows:

3.42 – 0.082 = 3.4136

Since, as discussed in Section 8.1.3, this metric utilizes an exponentially decreasing function to get the
impact of the download, the privacy value is now less affected than it was the first time. Thus, after
the second download, the current privacy value is 3.4136, which means that the user still has
moderately low privacy.

9. Implementation Concept

The privacy metric’s implementation is based on the subsections Input Data, Target Audience, and
Quantification. Subsequently, this subsection will be a summary of these three parts. Additionally, one
should always keep in mind that the metrics should be implemented to be easy to use and understand.

9.1 Input Data

The necessary input data for calculating the privacy metrics are partly dependent on user input and
partially reliant on the information coming from the database itself. Once they add their first data files
to the database, they must enter the first input variables: adversary strength and file similarity. The

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 100

user should have the option to pick between six different adversary strengths from which they want
their data protected. We decided on six adversary strengths because there are also six different privacy
categories, and to compare those two scales better, they should be of the same size.

For obtaining the user input, it is recommended to have the user fill out a form while uploading a new
file. The form could look as follows:

Figure 4, User input form 1

Question 1 only gets asked the first time a user uploads a file, and question 2 gets asked every time a
user uploads data to KRAKEN. An additional option for getting the approximate amount of files with
similar information would be to categorize them. For example, the user could give information about
the type of category the uploaded file belongs to, such as education, health, finances, etc.

The second input comes directly from KRAKEN and describes of how many data files a user uploaded
to the database. This one should be relatively simple to implement since this variable only keeps a
count of the user uploads. For example, if a user uploads a file, the variable should increase by one,
and if they delete a file, the variable should decrease by one.

As shown in Section 8, those inputs should be enough to calculate the privacy metrics and inform the
user of their privacy estimate.

9.2 Metrics

The quantification of the privacy metrics shouldn’t be challenging to implement since most of the
inputs come directly from the user, as can be seen in Section 9.1. One variable is the adversary
strength, and the other is the number of similar files. Additionally, there is also a third metric that
focuses on downloads. Consequently, all KRAKEN has to do is keep track of the number of user files in
the database and how often a particular file got downloaded.

The calculation of the metrics itself would be fairly easy since it mainly depends on the adversary
strength and only calculates the average amount of files an adversary of a certain strength might be
able access. Therefore, the calculation only consist of simple addition, subtraction, multiplication, and
division, and might look as follows:

 def metric1_calculator():

adv_strength_min = Lower adversary strength

adv_strenght_max = Higher adversary strength

num_files = Total number of user files

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 101

sim_files = Number of similar files

val1 = num_files – (num_files * adv_strength_min)

val2 = num_files – (num_files * adv_strenght_max)

file_access = num_files – ((val1 + val2)/2)

privacy_val = (file_access / num_files) * 100

Lastly, the program would need to use privacy_val as a key to get the correct privacy estimate from
the table, which could be implemented as a hash map, dictionary, etc.

The quantification of the second metric is based on the input sim_files, num_files, and privacy_val and
is more complicated. The variable privacy_val should be used to get the number of files an adversary
might be able to get and then this new variable should, together with the other two variables, calculate
the probability that the adversary gets at least two of sim_files when being able to access num_files *
(privacy_val/100). The pseudo-code for this part might look as follows:

def metric2_calculator():

file_access = num_files * (privacy_val/100)

total = 0

temp_files = num_files – sim_files

for i in range(2, sim_files + 1):

temp_access = file_access - i

total += ncr_combination(sim-files, i) * ncr_combination(temp_files,
temp_access)

 result = total / (ncr_combination(num_files, file_access))

 result = result * 100

 return result

def ncr_combination(n, r):

result = helper_comb(n) / ((helper_comb(r))*(helper_comb((n – r)))

def helper_comb(val):

if val == 1:

 return 1

return val * helper_comb(val-1)

The third metric can be easily implemented by using conditional statements. All it needs is conditional
statements that check, if a file gets downloaded, if there exist files of the same category, and if there
is additional information available. Depending on the outcomes of these statements, the according
category value will be subtracted from the privacy value. For example,

def metric_3():

 if file gets downloaded:

 if there are files of the same category:

 if there exists additional info:

 return Category_5

 else:

 return Category_4

 else:

 if there exists additional info:

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 102

 return Category_3

 else:

 return Category_3

 else:

 return Category_1

 def metric3_calculator(file):

 value = metric_3(file) ** download_count

 privacy_val -= value

 return privacy_val

9.3 Output Data

As discussed previously, KRAKEN’s goal is to implement the privacy metrics so that they are easy to
understand and don’t create difficulties for the users. Furthermore, the user should be able to
understand the output of their privacy estimate regardless of their technical expertise. As a result, in
part 7, Target Audience, we mentioned that the output could be portrayed in a similar way to most
password strengths output. An example of such an output can be seen in Figure 1 or Figure 5.

Figure 5, Privacy meter

Besides, the user would benefit from receiving information on why their privacy estimate is classified
as it is and how they could improve their privacy. Subsequently, it should be considered to inform the
user about their similar files and tell them that they should consider deleting some of the similar files
to improve their privacy if possible.

10. Conclusion

This section presented ideas that should help to quantify the users’ privacy within the KRAKEN
database. Most of the recommendations can be easily adjusted and changed by using different metrics
or weighing the importance of certain metrics more than others. The chosen privacy metrics defined
in this section are based on confidence interval width, differential privacy, and decision trees and aim
to give the user insights on their privacy by focusing mainly on linkage attacks. All metrics are kept as
simple as possible to facilitate their implementation and make them easier to understand. Therefore,
they were strongly modified to fit better into the KRAKEN context.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 103

Furthermore, this section offers the framework to choose other privacy metrics, if needed. Depending
on what one tries to quantify, different metrics apply. This part also showed how privacy metrics could
be added to already implemented metrics. That should allow for updating the KRAKEN privacy metrics
regularly, if necessary, and make the existing system even more compact to give the user an even
better quantification of their privacy.

D5.6 KRAKEN Marketplace Final Release

©KRAKEN Consortium 104

11. Bibliography

[1] I. Wagner and D. Eckhoff, “Technical privacy metrics: a systematic survey,” ACM Computing Surveys

(CSUR), vol. 51, no. 3, pp. 1–38, 2018.

[2] Koch, K., Krenn, S., Pellegrino, D., and Ramacher, S. „Privacy-Preserving Analytics for Data Markets

Using MPC“, o. J., 20.

[3] KRAKEN Consortium, “KRAKEN_D2.6 Marketplace Technical Specification_v1.0”, pp. 1-49, 2020.

[4] Privitar. Linkage Attack. Retrieved (2021) from https://www.privitar.com/glossary/linkage-attack/

[5] J. D. Cook Consulting. “Simulating identification by zip code, gender, birthdate”. 2018. Retrieved

from https://www.johndcook.com/blog/2018/12/07/simulating-zipcode-sex-birthdate/

[6] Wired. “Why ‘Anonymous’ Data Sometimes Isn’t”. 2007. Retrieved from

https://www.wired.com/2007/12/why-anonymous-data-sometimes-isnt/

[7] Narayanan, A., & Shmatikov, V. “How To Break Anonymity of the Netflix Prize Dataset. Arxiv

cs/0610105”. 2006. Retrieved from

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.3581&rep=rep1&type=pdf

[8] Barth-Jones, D. C. The „Re-Identification of Governor William Weld’s Medical Information: A Critical

Re-Examination of Health Data Identification Risks and Privacy Protections, Then and Now”. SSRN

Electronic Journal. 2012. Retrieved from https://doi.org/10.2139/ssrn.2076397

[9] Ohm, P. “BROKEN PROMISES OF PRIVACY: RESPONDING TO THE SURPRISING FAILURE OF

ANONYMIZATION”. UCLA LAW REVIEW, 77. 2012. Retrieved from

http://www.uclalawreview.org/pdf/57-6-3.pdf

[10] “Joint Task Force Transformation Initiative. “Guide for conducting risk assessments (NIST SP 800-

30r1; 0 Aufl., S. NIST SP 800-30r1)”. National Institute of Standards and Technology. 2012. Retrieved

from https://doi.org/10.6028/NIST.SP.800-30r1

[11] Samarati, P., & Sweeney, L. (o. J.). “Generalizing Data to Provide Anonymity when Disclosing

Information”. 15. Retrieved from

https://dataprivacylab.org/dataprivacy/projects/kanonymity/paper4.pdf

[12] Lundmark, M., & Dahlman C. “Differential privacy and machine learning: Calculating sensitivity

with generated data sets.” KTH Royal Institute of Technology. 2017. Retrieved from https://kth.diva-

portal.org/smash/get/diva2:1112478/FULLTEXT01.pdf

[13] Cynthia Dwork. 2006. Differential Privacy. In Proc. 33rd Int. Colloq. on Automata, Languages and

Programming (ICALP2006) (LNCS 4052). Retrieved from https://www.microsoft.com/en-

us/research/wp-content/uploads/2016/02/dwork.pdf

https://www.privitar.com/glossary/linkage-attack/
https://www.johndcook.com/blog/2018/12/07/simulating-zipcode-sex-birthdate/
https://www.wired.com/2007/12/why-anonymous-data-sometimes-isnt/
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.3581&rep=rep1&type=pdf
https://doi.org/10.2139/ssrn.2076397
http://www.uclalawreview.org/pdf/57-6-3.pdf
https://doi.org/10.6028/NIST.SP.800-30r1
https://dataprivacylab.org/dataprivacy/projects/kanonymity/paper4.pdf
https://kth.diva-portal.org/smash/get/diva2:1112478/FULLTEXT01.pdf
https://kth.diva-portal.org/smash/get/diva2:1112478/FULLTEXT01.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/dwork.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/dwork.pdf

www.krakenh2020.eu

This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 871473

@KrakenH2020

Kraken H2020

	1 Introduction
	1.1 Purpose of the document
	1.2 Structure of the document

	2 Marketplace Final Release Overview
	2.1 Technology Components Used in the Final Marketplace Release
	2.2 Major developments provided in first marketplace release
	2.3 Major developments undertaken in final marketplace release
	2.4 Updates to web-based marketplace user flows
	2.5 Final marketplace release architecture

	3 Marketplace Backend API
	3.1 Description
	3.2 Interfaces
	3.3 Deployment
	3.4 Source Code
	3.5 Baseline Technology and Tools

	4 Marketplace Catalogue Database
	4.1 Description
	4.2 Interfaces
	4.3 Deployment
	4.4 Source Code
	4.5 Baseline Technologies and Tools

	5 Marketplace Frontend
	5.1 Description
	5.2 Interfaces
	5.3 Deployment
	5.4 Source Code
	5.5 Baseline Technologies and Tools

	6 Marketplace Smart Contract
	6.1 Description
	6.2 Interfaces
	6.3 Deployment
	6.4 Source Code
	6.5 Baseline Technologies and Tools

	7 Marketplace xDai Watcher
	7.1 Description
	7.2 Interfaces
	7.3 Deployment
	7.4 Source Code
	7.5 Baseline Technologies and Tools

	8 Data Union Joining Server
	8.1 Description
	8.1.1 Development

	8.2 Interfaces
	8.3 Deployment
	8.4 Source Code
	8.5 Baseline Technologies and Tools

	9 Data Union Smart Contract
	9.1 Description
	9.2 Interfaces
	9.3 Deployment
	9.4 Source Code
	9.5 Baseline Technologies and Tools

	10 Streamr Network Integration
	10.1 Description
	10.2 Interfaces
	10.3 Deployment
	10.4 Source Code
	10.5 Baseline Technologies and Tools

	11 Consortium Blockchain Node
	11.1 Description
	11.2 Interfaces
	11.3 Deployment
	11.4 Source Code
	11.5 Baseline Technologies and Tools
	11.5.1 Private Network
	11.5.1 Cache Database
	11.5.1 Smart Contracts
	11.5.1 Application
	11.5.1 Documentation

	12 Marketplace Mobile App
	12.1 Description
	12.2 Interfaces
	12.3 Deployment
	12.4 Baseline Technologies and Tools

	13 MPC Node
	13.1 Description
	13.2 Interfaces
	13.3 Deployment
	13.4 Source Code
	13.5 Baseline Technologies and Tools

	14 Marketplace SSI Agent uSelf Broker
	14.1 Description
	14.2 Interfaces
	14.3 Deployment
	14.4 Source Code

	15 KRAKEN Company Depute Tool
	15.1 Description
	15.2 Interfaces
	15.3 Deployment
	15.4 Source Code

	16 KRAKEN Company Identification Tool
	16.1 Description
	16.2 Interfaces
	16.3 Deployment
	16.4 Source Code

	17 KRAKEN Revocation & Endorsement Registry
	17.1 Description
	17.2 Interfaces
	17.3 Deployment
	17.4 Source Code

	18 Privacy Metrics Tool
	18.1 Description
	18.1.1 Description
	18.1.2 Dataset Independent Inputs
	18.1.3 Privacy Value

	18.2 Interfaces
	18.3 Deployment
	18.4 Source Code
	18.5 Baseline Technology and Tools

	19 Conclusion
	20 References
	21 Annex 1: Selecting Privacy Metrics for KRAKEN
	1. Introduction
	2. Output Measures
	3. Adversary Model
	4. Data Sources and Use Cases
	4.1 Health Data
	4.2 Education Data

	5. Input Data
	5.1 Example #1
	5.2 Example #2

	6. Potential KRAKEN Privacy Metrics
	7. Target Audience
	8. Quantification
	8.1 KRAKEN Metrics
	8.1.1 Metric #1: Confidence Interval Width
	8.1.2 Metric #2: Differential Privacy
	8.1.3 Metric #3: Decision Tree
	8.1.4 Utilization

	8.2 Upload Example #1
	8.3 Upload Example #2
	8.4 Download Example #1
	8.5 Download Example #2

	9. Implementation Concept
	9.1 Input Data
	9.2 Metrics
	9.3 Output Data

	10. Conclusion
	11. Bibliography

